- - N

PR a = :" ' A e o

e E__ e CTTTT TN (Y1111 o !H[!!....’T?.q‘ﬂumn [T ITTITH —
FACULTAD DE INGENIERIA U.N.A.M.
DIVISION DE EDUCACION CONTINUA

A LOS ASISTENTES A LOS CURSOS

Las autoridades de la Facultad de Ingenieria, por conducto del jefe de la

Divisién de Educacion Continua, otorgan una constancia de asistencia a

quienes cumplan con los requisitos establecidos para cada curso.

El control de asistencia se llevari a cabo a través de la persona que le entregé
las notas. Las inasistencias serdn computadas por las autoridades de la
Division, con el fin de entregarle constancia solamente a los alumnos que

tengan un minimo de 80% de asistencias.

Pedimos a los asisteﬁtes recoger su constancia el dia de la clausura. Estas se
retendran por el périodo de un afio, pasado este tiempo la DECFI no se hara

responsable de este. documento.

Se recomienda a los asistentes : participar activamente con sus ideas vy
experiencias, pues los cursos que ofrece la Division estan planeados para que
los profesores expongan una tesis, pero sobre todo, para que coordinen las

opiniones de todos los interesados, constituyendo verdaderos seminarios.

Es muy importante que todos los asistentes llenen y entreguen su hoja de
inscripcion al inicio del “curso, informacién que servira para integrar un

directorio de asistentes, que se entregara oportunamente.

Con el objeto de mejorar los servicios que la Division de Educacién Continua
ofrece, al final del curso "deberdn entregar la evaluacién a través de un

cuestionario disefiado para emitir juicios anénimos.

Se recomienda llenar dicha evaluacién conforme los profesores impartan sus
clases, a efecto de no llenar en la iltima sesién las evaluaciones y con esto

sean mias fehacientes sus apreciaciones.

. ‘ Atentamente

Divisién de Educaciéon Continua.

Palacio de Mineria Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. APDO. Postal M-2285
Telefonos: 5128955 5125121 5217335 521-1987 Fax 510-0573 521-4020 AL 26

EXJ

P
GO
e u
L P

PALACIO

O._KO._._D_...(
OX3NY
- - - - ———

VS3IANOD.V1 30 NOFr31IvD

-.—.lu._..lﬁ,._. TTr=="="" l..l-

YLYIN ONIWOL 3TIVvD

"CALLE TACUBA

CALLE TACUBA

MEZZANINNE

PLANTA BAJA

CALLE FILOMENO MATA

PALACIO® D8 NS5

| EXRECTCRES p INGENIERIA ;

-8
‘ GALERiADE i ACADEMIA H

CALLEJON DE LA CONDESA

GUIA DE LOCALIZACION

1. ACCESO
2. BIBLIOTECA HISTORICA
3. LIBRERIA UNAM

4. CENTRO DE INFORMACION Y DOCUMENTACION
"ING. BRUNO MASCANZONI"

5.PROGRAMA DE APOYO A LA TITULACION

6. OFICINAS GENERALES

7. ENTREGA DE MATERIAL Y CONTROL DE ASISTENCIA
8. SALA DE DESCANSO

SANITARIOS

* AULAS

DIVISION DE EDUCACION’ CONTINUA
FACULTAD DE INGENIERIA U.N.A.M.
CURSOS ABIERTOS

Wxﬂﬂnm:a Wiy
—o¥y
e S0H
e g"ﬂy

AVENMA DE
Mexico

trc?,@es;amﬁ@m@ Paralelo en
Sistemas de Tiempo Real

Division de Educacion Continua de la
 Facultad de Ingenieria

en colaboracion con el |

Instituto de Investigaciones en Matematicas
Aplicadas y en Sistemas

Dr. Fabian Garcia Nocetti
Dr. Julio Solano Gonzalez

B s I

- .

¥
b
e

I E . A

- s oy wedeiit e e S aw s

b rin R gt et Sepr e e o eawad e a1

A

5. Lenguaje Occam
5.1 Primitivas
5.2 Constructores y Replicadores
5.3 Operadores y Arreglos
5.4 Funciones y Procedimientos
5.5 Protocolos de Comunicacion
5.6 Timers y Puertos

6. Programacion de Procesos Paralelos
6.1 Metodologia
6.2 Programacién en un procesador
6.3 Programacién en maltiples procesadores
6.4 Configuracién de programas
6.5 Mapeo de procesos en procesadores
6.6 Casos de estudio
7. Aplicaciones .
7.1 Control
7.2 Robotica
7.3 Procesamiento de Seiiales ¢ Imagenes

Apéndice. Occam 2 Toolset

TECNICAS DE ENSENANZA

Las sesiones tedricas estaran complementadas con lecturas relativas a los temas tratados y con ejercicios
practicos de programacién paralela. Para desarrollar el trabajo prictico se utilizard una plataforma
multiususario de procesamiento paralelo, accesible via red local. Este sistema esta integrado por 16 transputers
y cuenta con compiladores paralelos y herramientas de software.

BIBLIOGRAFIA

Stone, H.S., "High Performance Computer Architectures", Addison Wesley, 1987.

Krishnamurthy, E.V., "Parallel Processing Principles and Practice", Addison Wesley, 1989.

Bertsekas, D.P., "Parallel and Distributed Computation-Numerical Methods", Prentice Hall, 1989.
Pountain, D., May, D.; "A Tutorial Introduction to Occam Programming”, Blackwell Publications, 1987.
Jones, G., Goldsmith, M., "Programming in Occam‘2", Prentice Hall, 1988.

Harp, G., "Transputer Applications”, Computer Systems Series, Pitman, 1989,

May, M.D., "Networks, Routers and Transputers -Function, Performance and Applications, 108 Press, 1993.
Thoeni, U., "Programming Real-Time Multicomputers for Signal Processing", Prentice Hall, 1994.

Russ, J.C., "The Image Processing Handbook -2nd. Edition", CRC Press , 1995.

Webber, H.C., "Image Processing and Transputers”, [0S Press, 1992.

de i s

1

Procesamiento Paralelo

PROCESAMIENTO PARALELO, TRANSPUTERS Y OCCAM

DR. FABIAN GARCIA NOCETTI
DR. JULIO SOLANO GONZALELZ

Laboratorio de Procesamiento Paralelo
Departamento de Electronica y Automatizacion
Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas
Universidad Nacional Autonoma de México
Apdo. Postal 20-726 Admon. 20, Delegacion Alvaro Obregon
01000 México D.F.

1. INTRODUCCION.

Los sistemas convencionales de computo operan en una forma secuencial, en donde las instrucciones
de un programa son ejecutadas una a la vez. Esta caracteristica ha sido forzada por la arquitectura
secuencial de computadoras convencionales (arquitectura von Neumann), en la cual un procesador
central esta conectado a un banco de memoria por medio de un bus. Desde entonces la mayoria de
sucesivas generaciones de computadoras disponibles han seguido este disefio [1]. Sin embargo una
gran variedad de problemas asociados a las areas de control, vision, simulacion, procesamiento de
voz, imagenes y procesamiento digital de sefiales poseen un paralelismo intrinseco. De hecho el
-resolver este tipo de problemas en forma secuencial ha sido computacionalmente intensivo y
restrictivo, sobre todo cuando se trata con aplicaciones en tiempo real, en donde se manejan
intervalos de muestreo muy cortos del orden de milisegundos.

Un caso tipico en ingenieria de control es la implementacion de un controlador digital en tiempo
real, en donde el calculo de las variables controladas debe ser realizado dentro de un intervalo de
muestreo tipico de 5-20 ms [2]. Aun considerando el poder'de computo de modernos procesadores
secuenciales convencionales, esto puede ser dificil de alcanzar, sobre todo cuando se manejan
multiples variables. Ya que este tipo de sistemas puede envolver tipicamente, un nimero de
algoritmos de control, simulacién, optimizacion, filtrado e identificacion, junto con otras actividades
como adquisicion y chequeo de informacion. Claramente, a mayor complejidad de los algoritinos
corresponde una mayor dificultad en el problema de realizar los calculos necesarios en tiempo-real.

Aplicaciones diferentes imponen demandas variables en el controlador. Por ejemplo, los intervaios
de muestreo para et control de motores eléctricos deben ser cortos debido a las pequefias constantes
de tiempo manejadas. Sistemas multivariables, envuelven un mayor nivel de complejidad en el
calculo de las sefiales controladas ya que estas deben ser calculadas simultaneamente [3]. En
sistemas de seguridad, donde la confiabilidad es fundamental, la incorporacion de caracteristicas
adicionales tales como tolerancia de fallas y redundancia, se pueden traducir en un incremento
considerable en la carga computacional.

Como se puede observar, ciertas aplicaciones reales estan sobrepasando los limites de desempeiio
de arquitecturas convencionales [4]. Aunque el uso de la tecnologia de integracion ha traido como
resultado un incremento en la velocidad de los procesadores y en consecuencia de los sistemas de
computo, la tecnologia no ha logrado incrementar la velocidad en la misma proporcién que el nivel
de integracion. La velocidad maxima a la que las componentes clectronicas operan ha marcado un
limite en el disefio de procesadores mas veloces. La alternativa ha sido entonces modificar la

arquitectura tipica de los sistemas de computo. Esto ha estimulado la investigacion y el uso de

arquitecturas alternativas que satisfagan las nuevas demandas computacionales de una manera
efectiva y practica. Procesamiento paralelo ha sido una de las mas viables alternativas.

La disponibilidad actual de arquitecturas de procesamiento paralelo, que permiten distribuir tanto
algoritmos como informacion sobre un numero de procesadores, ha creado nuevas oportunidades
para el disefio e implementacion de sistemas mas rapidos y complejos [5]. Procesamiento paralelo
estan siendo cada vez mas atractivo como un medio para construir sistemas de alto desempeno y
confiabilidad {6]. '

La manera convencional de lograr alto desempefio es mediante la particion del sistema en modulos
y la distribucion de éstos en un numero adecuado de procesadores para lograr el menor tiempo de
ejecucion posible. Confiabilidad es llevada a cabo mediante el uso de tolerancia a fallas, que es la
habilidad de un sistema para continuar operando en presencia de algun tipo de falla. La tecnologia
de computo paralelo de hecho ha teniendo un gran impacto en el disefio e implementacion de
sistemas en tiempo real asociados a problemas de control, vision, simulacién, procesamiento de voz,
imagenes y procesamiento digital de sefiales. Dicha tecnologia ha expandido el dominio factible de
este tipo de sistemas [7]. Especialmente en sistemas que operan en tiempo real y sistemas integrados,
donde las limitaciones de procesamiento han restringido tradicionalmente sus capacidades.

En particular fa introduccion del transputer y su lenguaje asociado occam, para el soporte de
procesamiento paralelo, ha tenido un gran impacto en un nimero de aplicaciones, permitiendo el
disefio y construccién de sistemas mas rapidos y complejos, de una forma simple y estructurada [8].
El transputer y occam, han sido disefiados especificamente para ser usados en sistemas de multiples
procesadores, y diversas topologias, ofreciendo el prospecto de un desempefio escalable a medida
que mas procesadores son agregados al sistema, siendo éste un factor determinante para su
utilizacion en una creciente variedad de aplicaciones.

2. PROCESAMIENTO PARALELO

2.1 Beneficios de Procesamiento Paralelo

Un sistema de procesamiento paralelo esta compuesto por un nimero de elementos de
procesamiento (PEs) que pueden operar en forma concurrente, comunicandose entre si cuando es

necesario, Figura 1. Las diversas arquitecturas difieren entre si, tanto por el poder de computo de
sus PEs como por su modo de conexion.

o .- - - - - —_— - .- - - ———

. - .- Mw-‘d:

(ORI e L

—d

PO R PITS

Figura 1. Sistema de Procesamiento Paralelo Generalizado.

Esto conduce a conceptos nuevos tales como granularidad de actividad, el cual es una medida del

tamafio de las actividades que pueden ser ejecutadas efectivamente por los PEs de una .

arquitectura especifica. PEs :de arquitecturas de grano fino son caracterizados por tener
operaciones limitadas y especificas, asi como un gran ancho de banda para comunicacion,de
informacion. Por otro' lado, PEs de arquitecturas de grano grande poseen operaciones yde
proposito mas general pero una banda més reducida de comunicaciéon [9]. Ya ha sido seialado
" que a medida que una aplicacion en tiempo real se torna mas compleja, un procesador de
propésito general resulta inadecuado para ejecutar las operaciones necesarias dentro del intervalo
de muestreo requerido.. E] potencial ofrecido por un sistema de procesamiento paralelo, ofrece
una solucién viable tanto al problema de velocidad como complejidad. Otros benelicios
incluyen, flexibilidad, conectividad y habilidad para reconfiguracion, lo cual permite construir
disefios de sistemas redundantes y tolerantes a fallas. Ademas partiendo del hecho que las
operaciones concusrentes son un fenomeno natural en sistemas que operan en tiempo real, el uso
de procesamiento paralelo habilita al disefiador de este tipo de sistemas a expresar claramente la
variedad de actividades secuenciales y paralelas que seran realizadas por el sistema digital
objetivo. Finalmente la escalabilidad de un sistema multiprocesador, permite una facil expansion
para acomodar crecientes requerimientos futuros.

2.2 Arquitecturas de Procesamiento Paralelo.

Dentro de un sistema de procesamiento paralelo los procesadores pueden ser interconectados de
diferentes maneras, dando lugar a una gran varicdad de arquitecturas. Similarmente, una
variedad de métodos han sido desarrollados. para programar estos sistemas. Frecuentemente se
tiende a agrupar estas arquitecturas en dos tipos: arquitecturas de memoria compartida
(procesadores pueden accesar memoria coman) y arquitecturas de memoria distribuida (cada
procesador tiene su propia memoria). Sin embargo, una de las clasificaciones mas utilizadas es

aquella conocida como taxonomia de Flynn [10). Esta taxonomia considera la arquitectura

3

mmmmt e ceeeame— s PR — o . . e e e s e cmer iw —

-

e

. ,-Ma-..--é-ﬁ

H ompmbA b

JEUPT SR T RS E R L R

-

vt g 1,

tradicional von Neumann como un modelo Single Instruction-stream Single Data-stream (SISD)
y a las arquitecturas de procesamiento paralelo como:

1. Multiple Instruction-siream Single Data-stream (MISD). Varios procesadores ejecutan
simultaneamente diferentes instrucciones en un mismo grupo dc datos.

2. Single Instruction-stream Multiple Data-stream (SIMD). Varios procesadores ejecutan
simultaneamente la misma instruccion en maltiples grupos de datos.

3. Multiple Instruction-stream Multiple Data-stream (SIMD). En esta arquitectura cada procesador
puede realizar diferentes instrucciones en diferentes datos.

Este curso se ha centrado en arquitecturas del tipo MIMD realizadas con transputers, en donde cada
uno de éstos puede ejecutar programas diferentes y se comunican entre si solo para intercambiar
resultados. Un numero de topologias han sido derivadas de la implementacion de este tipo de
arquitecturas. La Figura 2, muestra algunas de las configuraciones mas utilizadas en la construccion
de estos sistemas. :

i I

(.b :: L1
G-l

(@) (b) (c)

(=H3

¢eee ST ¢
G
(M)

Figura 2. Configuraciones Tipicas MIMD: (a)Bus Compartido; (b)Crossbar; (c)Punto
PE = Elementos de Procesamiepto; M = Memoria.

Los sistemas MIMD ofrecen una mayor flexibilidad que los sistemas SIMD y MISD, en el
manejo de software de proposito general y han sido por tanto adoptados en la solucion de
problemas en un gran nimero de disciplinas. Sin embargo es conveniente notar que la
implementacion exitosa de un determinado algoritmo dependera del grado de paralelismo que
este ofrece, aunado a una adecuada seleccion de granularidad. El desempeiio de un sistema de
procesamiento paralelo es también dependiente de la relacion conocida como R/C, donde R es el
tiempo de ejecucion de un proceso y C es el tiempo que ese proceso emplea en comunicaciones
con otros procesos. Claramente un valor grande en esta relacion es deseable.

Sin embargo no existe'una regla definitiva para establecer un valor adecuado. Ya que valores
grandes de R/C pueden ignorar paralelismo potencial en el problema, mientras que el subdividir

el problema hasta alcanzar el maximo paralelismo, puede conducir a un exceso de

4

FRep—— ‘...a.._“a.d

s vk -

Ry p i b = b A b i

[VY S RS T

e = A

.‘J-«a...‘a._ [U ¥ S

]
1

M N . -

comunicaciones entre procesos. Por 1o tanto, en la tarca de distribuir 0 mapear una aplicacion en una
arreglo de PEs, el disefiador debe seleccionar cuidadosamente la granularidad del algoritmo, de tal
forma que mantenga una adecuada relacion entre tiempos de ejecucion y comunicacion de los
procesos que integran el sistema, '

3. TRANSPUTER Y OCCAM

El transputer es una arquitectura VLSI que soporta explicitamente concurrencia y sincronizacion
[11]. La diferencia entre un transputer y una microcomputadora ordinaria, es que éste contiene un
organizador de actividades "scheduler" integrado, capaz de distribuir su tiempo entre un numero de
procesos concurrentes, de esta forma el transputer, ademas de ejecutar procesos en modo secuencial,
puede ejecutar procesos concurrentemente. Varios transputers se puede agrupar.de una manera
rapida y directa para formar redes y arreglos, ver Figura 3. Cada transputer trabaja en su propia
actividad y usa su memoria local. Para que los transputers puedan cooperar en un sistema necesitan
comunicarse entre si, esto es realizado a través de interfases seriales denominadas "links", cada uno
con un canal de entrada y otro de salida.

1 ! 1]
A A T T T
.— —y ‘-l . Pl
4 1
, O-J .- - le—4 T
v + + 4

@ |)

Figura 3. (a) Un Transputer. (b) Una Red de Transputers.

Por su parte el lenguaje occam esta disefiado para manejar tanto procesos secuenciales como
concurrentes. Estos son modelados como procesos occam que trabajan con su propia
informacion local. Un proceso coopera con otros procesos usando canales de comunicacion. Una
coleccion de procesos occam forma a su vez un proceso, de esta forma una jerarquia de procesos
puede ser construida para modelar procesos reales.

5

-

1

[Y

i
|
¢
{
1
LJ‘-O—I-—*‘-.XM«M“-—-‘M Lam e o e Bairaen e et e beae¥ i p o

5

De acuerdo con lo anterior el modelo de proceso occam puede ser mapeado eficientemente cn un
arreglo de transputers, cada uno con su memoria local, comunicandose a través de links, ver Figura
4. Finalmente, no obstante su profunda asociacion con el transputer, occam es un lenguaje de
propésito general que puede ser implementado en otras arquitecturas. El transputer es considerado
aqui como un vehiculo eficiente para implenentar este fenguaje.

(@) (b)

- Figura 4. Procesos Occam: (a) en un Transputer; (b) en varios Transputers.
3.1 Arquitectura del Transputer

El transputer comprende una familia de microcomputadoras lmplementadas a nivel de VLSI, que
incluyen, en un mismo circuito integrado, un procesador, memoria y links de comumcacnbn para
interconectarse con otros transputers. La version T800 del transputer es mostrada en la Figura 5.

El transputer TSOO consta de un procesador RISC de 32 bits (15 MIPS a 30 MHz), unidad de punto
flotante de 64 bits (2.25 Mflops a 30 MHz), 4 Kbytes de memoria local RAM, una interfase
configurable para accesar memoria externa y cuatro links de comunicacion, que operan a velocidad
maxima de 20 Mbits/s {12]. Ademas de las caracteristicas tipicas del transputer, relativas a
integracion, velocidad de operacion e interfases, otro aspecto atractivo es su soporte de concurrencia.

El desarrolio y evaluacion de una aplicacion, como un numero de procesos concurrentes, puede

llevarse a cabo enteramente en un solo transputer. Después, los procesos componentes de la misma
aplicacion pueden ser distribuidos para operar realmente en paralelo en una red de transputers. Lo
anterior requiere de instrucciones occam adicionales de configuracion o mapeo que asocian cada
proceso a ser ejecutado con su correspondiente transputer. .

6

.t amrE ed m

—m——

o b c——— o warth - ey e o)

iy AR e Al m i mede BR R fop sk W AR R s -

bt 2t d semre ot sk

|

[P TRERRE

64-bit Floating Point'Unit

32 blt
i Processor

EPEH

s b ERRRIEA LA

Figura 5. Arquitectura det Transputer T800.

En la implementacion de aplicaciones en tiempo real, generalmente el disefiador es responsable
de este mapeo fisico de procesos en procesadores. Aunque existen sistemas operativos que £
realizan el mapeo de aplicaciones en forma transparente al-usuario. estos generalmente
introducen una mayor carga computacional al sistema, siendo solo adecuados en aplicaciones
fuera de linea [13]. Diferentes topologias han sido utilizadas en aplicaciones de sistemas de
transputers. Estas topologias -incluyen procesadores en linea, anillo, arbol, arreglos de 2
dimensiones, hipercubos, etc. La Figura 6 muestra algunos de estos arreglos. : .

| I | il ' [I

i Wy 17

|
| TUT1 o
-0 e M ;

Figura 6. Topologias de Transputers: (a) Linea; (b) Anillo; (c) Hipercubo.
1

oo e

7

'
1
Q
{
i
i
Giflmen 8o wanmi s

La nueva generacion de transputers, serie T9000, actualmente en desarrollo, brindara un importante
incremento en el desempefio de sistemas de procesamiento paralelo. Esta serie ofrece un arquitectura
basada en procesadores "pipeline” (150 MIPS y 20 MFLOPS a 50 MHz), 16 Kbytes de memoria
local y un nuevo sistema de comunicacién operando a 100 Mbits/s [15]. Un aspecto tambi¢n
importante ¢s que sus instrucciones son compatible con previas series, garantizando compatibibidad
con sistemas de transputers actuales.

3.2 El Lenguaje Occam

Transputers pueden ser programados en lenguajes de alto nivel (C, FORTRAN 6 PASCAL), sin
embargo cuando es necesario explotar concurrencia y ganar mayor beneficio de su arquitectura,
occam es recomendado, ya que provee muchas de las ventajas de un lenguaje de alto nivel y al
mismo tiempo una alta eficiencia (comparable con la de un ensamblador). Occam es un lenguaje de
programacion disefiado para manejar concurrencia [16]. Esto es relevante sobre todo en aplicaciones
practicas de paralelo, ya que permite-expresar un sistema en terminos de procesos concurrentes que
se comunican entre si, Jo cual da una estructura simple y clara. Ademas, ofrece la alternativa de
gjecutar todos los procesos en un solo transputer o distribuirlos en un niimero de éstos [17].

La unidad basica de programacién en occam es el "proceso", un proceso empieza, realiza una serie
de acciones y se detiene o termina. Este concepto puede parecer similar a otros conceptos de
programacion convencional, excepto que en occam puede haber mas de un proceso ejecutandose al
mismo tiempo y tratando de comunicarse con algun otro a través de sus canales. Los procesos en
occam estan constituidos por tres procesos primitivos:

asignacion vi=e | asigna el valor de la variable e a la variable v,
entrada -c?x - ; -- - -recibe un-valor en el canal ¢, lo asigna a la variable x , y ..
salida cle ; transmtite el valor de la expresion e a través del canal c.

Cuando un comando de salida es encontrado en un proceso, este proceso se mantiene en ese estado
hasta que otro proceso ejecuta el comando de entrada correspondiente. De tal forma que la
comunicacion se lleve a cabo en el canal comun utilizado por ambos procesos. Del mismo modo un
comando de entrada no puede ser ejecutado, hasta que el correspondiente comando de salida es
alcanzado en el proceso contraparte. De esta forma se asegura la sincronizacion. Varios procesos
primitivos pueden ser combinados en uno mas grande y formar un constructor, que es a su vez un
proceso y puede ser usado como componente de otro constructor. Estos son basicamente:

SEQ -constructor secuencial
PAR -constructor paralelo, y
ALT -constructor alternativo

Constructores tipicos tales como IF y WHILE son también soportados. Como occam es un lenguaje
de programacion concurrente, ejecucion secuencial, paralela o alternativa debe ser especificada. El
constructor SEQ indica que las declaraciones incluidas dentro del proceso seran ejecutadas en

8

-

de programacion concurrente, ejecucién secuencial, paralela o alternativa debe ser especificada. El
constructor SEQ indica que las declaraciones incluidas dentro_del proceso serdn ejecutadas en
secuencia. En el siguiente proceso, una sefial medida es leida en el canal ADC, escalada y el
resultado es enviado al canal DAC:

SEQ
ADC ? seial.mediada
senal.escalada := seiial.escalada * factor
DAC ! seiial.escalada

Notese que exisle una sangria entre el constructor y sus procesos componentes. Figura 7 ilustra la
relacion entre este proceso y sus canales.

ADC - process ——» DAC w

Figure 7. Ejemplo de Constructor Secuencial

El constructor PAR establece que los procesos incluidos seran ejecutados en paralelo, ver Figura
8. Tomando como procesos componentes dos procesos secuenciales: .

PAR

SEQ
ADCL1 ? seiial.mediada
seiial.escalada := seiial.escalada * factor
DAC ! sefial.escalada

SEQ
ADC2 ? senal.mediada
seial.escalada ;= seiial.escalada * factor
DAC ! seiial.escalada

PR

process » DAC 1

ADC 1

process

ADC 2 » DAC?2

Figure 8. Ejemplo de Constructor Paralelo

El constructor ALT es usado para realizar la ejecucion de procesos alternativos mediante la
activacion de su canal correspondiente. En el ejemplo: este constructor espera hasta que alguno
de los canales de entrada canall, canal2 6 canal3 es activado para realizar el proceso
correspondiente. El constructor ejecuta el solamente el proceso asociado con la primera entrada
que se lleve a cabo y finalmente termina. Ejemplo:

ALT
canall ? x
... proceso 1
canal2 ? x
- - - proceso2 ...
canal3 ? x
. proceso 3

Notese que hemos usado la convencion ... proceso para denotar el proceso que encierra esa
declaracién y expresar en forma mas clara el constructor. E! constructor ALT ofrece un método
formal de alto nivel para manejar eventos internos y externos que en procesadores convencionales
son manejados como interrupciones a nivel de ensamblador.

3.3 Programacion en Tiempo Real

Prioridades son fundamentales en aplicaciones en tiempo real. Aunque occam ofrece soporte para
establecer y asignar diferentes niveles de prioridad en la ejecucion de procesos, en su
implementacion en el transputer solo existen dos niveles de prioridad (alta y baja), esto ha resultado
insuficiente en diversos tipos aplicaciones de tiempo real. sin embargo se han desarrollado técnicas
a nivel de programacion que resuelven este problema a un costo computacional minimo [18].

10

e st

[A PP P,

“hienr o F

b e b om o

A T

Occam ademas ofrcce una manera directa de asignar procesos logicos a procesadores tisicos. El
numero de procesadores puede no corresponder al numero de procesos, ya que es posible asignar
varios procesos a un solo procesador. Es de hecho una buena practica el descomponer el problema
de tal forma que resulten mas procesos que procesadores. Ya que es generalmente mas facil agrupar
procesos, que subdividirlos una vez que ¢l disciio del sistema se ha establecido.

Existen dos formas fundamentales de asignar actividades a procesadores: estatica y dindmica. En
una asignacion estatica la asociacion de actividades a el procesador es fija y se lleva a cabo antes
de ejecutar el programa, mientras que en una asignacion dinamica de actividades, éstas son
distribuidas durante la ejecucion del programa, de acuerdo a un numero de criterios, tales como
disponibilidad de procesadores, prioridades y dependencia de actividades.

La asignacion dinamica de actividades ofrece un mayor potencial para una éptima utilizacion de
procesadores, pero al mismo tiempo produce una disminucion en el desempefio del sistema asociado
con el incremento en el nivel de comunicaciones y el costo computacional del software de

asignacion y destribucion. Lo cual puede ser inaceptable en cierto tipo de aplicaciones en tiempo
real, en donde una asignacion estatica de actividades puede ofrecer un mejor desempefio.

BIBLIOGRAFIA

1. Kuck, D.J., "High Performance Computing”, Oxford University Press, 1996.

2. Garcia Nocetti, D.F. and Fleming, P.J. "Parallel Processing in Digital Control- Advances in
Industrial Control”, Springer-Verlag, 1992.

3. Stone, H.S., "High Performance Computer Architectures”, Addison Wesley, 1937.

4 Krishnamurthy, E.V., "Parallel Processing Principles and Practice”. Addison Wesley, 1989.

5. Thoeni, U., "Programming Real-Time Multicompulters for Signal Proccssing”, Prentice Hall, 1994.
6. Lewis, T. G, "Introdu‘ction to Parallel Computing", Prenlice-Ha‘!l International, 199P_2.

7. Metropolis, N. and Rota, G.C. "A new Era in Computation”, MIT Press, 19?3.

8. Harp, G, "Transputer Applications", Computer Systems Serics. Pitman. 1989.

9. Tzafestas, S. "Parallel and Distributed Computing in Engineering Systems", North-Holland,
1991.

10. Flynn, MF., "Some Computer Organisations and Their Effectiveness”, 1IEEE Trans
Comput., C-21, 1972, pp. 948-960.

11

Y YR

P

11.

12.

14.

15.

16.

17.

18.

o e b A e

INMOS Limited, "Transputer Overview", The Transputer Databook, Second edition, 1989.

INMOS Limited, "Transputer T800", The Transputer Databook, Second edition, 1989.

. Kim, T., "Operating Systems", in Transputer Applications (Ed. Harp, G}, Computer

Systems Series, Pitman 1989,

May, M.D., Thompson, P.W., Welch, P.H., "Networks, Routers and Transputers -Function, Performance
and Applications; 10S Press, 1993.

Dyson C., "The Next Generation Transputer”, Technical Note, Inmos Bristol, July 1990.
Inmos Ltd, "Occam 2 Reference Manual", Prentice Hall, 1987.
Jones, G., Goldsmith, M., "Programming in Occam 2", Prentice Hall, 1983.

Welch, P.H. "Multi-Priority Schedulers for Transputer-based Real-time Control”, Real-Time
Systems with Transputers, I0S Press, 1990.

Lo e e w s

bk e A

P R .

- —_— - - e - —_ e = v e

e e e s . .

2

Estructuras de
Programacion Paralela

S g g — T b L e snem s e

o M - T - R - s . - v . et ke S e T g A Y ¥ RO Y
' .

‘1
l Chapter 11
1

_Approaches to writing parallel programs in
occam .

; . The previous chapters have concentrated on the various program construcis available in cccam
and have explained their use. In order to reap the most benefit from the use of occam and .
transputers, programs need to exhibit some degree of parallelism, Every application needs to
be considered 10 see how the inherent parallelism may be best expressed and expioited. But
. : this is not an easy exercise. The conventional mould of thinking and eapressing the solution to
E , a programming problem as a sequence of steps must be broken. A number of approaches for
apptying pasallelism to problems have yielded promising results for occam and the transputer.
However much more expericnce is needed in the art and science of parallel programming.
Parallelism is expressed wathin an occam program by paralicl constructions. Given the fact
I that each parallel process may be mapped on 10 a scparate processor for execution, the
| poienial benefits in terms of speed and efficiency may be enormous. Nevenheless, efficiency
. | considerations need to be taken into account so that the benefits gained from parallelism are
not lost.

The granutarity of the parallelism in the application and how it is distnbuted over a transpuler
network need ta be carefully assessed. Granularity is a measure of purallelism - the number of
parallel processes in an application. A large amount of parallelism is not necessanly an ideal
siwation. It is necessary to achieve a balance between keeping each processor busy with
computation and maintaining inter-process communicagon time at a minimum. The current
versions of the transputer do not provide message routing in hardware; valuable computation
time can be taken up in providing extra occam processes to implement software message
) routing between processes. With a too finc-grained granulanity, there will be many parallel
; . processes and then the communications overhead can dominate the computation. However in

coarse-grained granularity, with not so many parallel processes, the computation should
dominate the communications.

The organisation of programs around the parallel paradigm has been approached in a numbe-r

of different ways. These various approaches may be broadly classified into the following
catepories

§ « algorithmic - quast-independent tasks which execute sections of the problem
solution alporithm (and are theretore non-idemtical), cata and computed results
' i being passed amonp ilic tashs as the algorithm dictates.

I
L I PP S T JUNIPRE YRR S - B ana
- - otla S, tan - EERER T - Al - T I - - et e PRI ST

u Ce e e el

]

.J.l‘..‘w,..a. “ e ... e e [

192

s geometric - quasi-independent but identical tasks which process a portion of
the data, and which inieract with {or are affecied by) neighbounng tasks,
according to the geomety of the problem. .

 process farming - fully independent but identical tasks which process the data
in any order,

Analysis of the problem using data flow diagrams presents a graphical method for visualising
the component processes of a program - the processes are represented by circles, the channels
are represented by arcs connecting the circles. Such a method has been found useful in the
design of occam programs [Kerridge]l. Another graphical method which may also prove useful
for designing occam programs is the Petri-net potation [Peterson]. This technique allows the
graphical expression of parallel strands of computation, so that its suitability to the design of

occam programs should be apparent. CSP [Hoare], the theoretical basis for occam, is an

excellent tool for expressing the design of occam programs.

The following sections of the chapter discuss in more detail the three approaches to writing
paraltel programs in occam, giving a concrete example in-each case. For simphcity of
presentation, the handling of process termination has been omitted in the first two examples.
Realistically, this should always be provided - see Chapter 6 for an example how this might be
achieved. The third example contains code for process termination.

11.1 Algorithmic paralielism

The algorithmic approach, also known as data flow decomposition, is concerned with injecting
parallelism into the algorithm being used to solve the problem at hand. The algorithm may be
an already exisung sequential one or totally new. Parallelism can be inroduced by considering
how the algorithm may be broken up into separaie, quasi-independent sections. Each section
can then be executed in parallel, with dala flowing between the sections as necessary. Each

_section will perform some computation with the data, and then pass the data on to the next

section,

The inherent paralletism is frequently found in a loop or iteration. Consider a linear search for
example. 1a the sequential case, each item in the list is compared one at a time as the search
sequences trough the list. This comparison may however be performed more efficiendy in
parallel - each comparison may be performed at the same time.

The algorithmic approach is modelled by occam parallel processes, each parallel process
responsible for the execution of a section of the algonthm, using the synchrenisation and
communication provided by occam channels to transfer data between the processes. The
communicaton overhead between the parailel processes in such circumstances can become

-

quite significant.

A common example of the slgorithmic approach is the pipeline - each unit of the pipeline
contributes by executing a section of the algorithm. The independent units may operate on
separate portions of the data as the stream of data is fed down the pipeline. The overall effect
of this overlapped operation is the realisation of parailel execution.

'

Such organisation is not limited o one-dimensional cases. For example, a systoli-c array is

cffectively a two-dimensional pipeline that may be used to great cffect for the parallel
execution of matrix operations [Janes and Goldsmith].

As an example of the algorithmic approach, consider the Newton-Raphson estmate technique
for evaluating square-roots. This method starts off with the value of the number whose
squarc-root is required and an initial estimate of the square-root. The Newton-Raphson
formula is then applied in an iterative manner, each time producing a better estimate of the
square-root from the previous value. 1If the iteration is performed a large number of times, the
final estimate will be a close approximation 1o the real value.

The Newton-Raphson formula for calculating the square root of a number x is
1 X
Y1 = '2'(71 + =)
]
where y,. y;,, are successive estimations of the reot y.

This formula may be expressed in occam as

Estimate := (Estimate + (Number / Estimate)) / 2.0 (REALJ32)

\\there Number is the number whose aquare root is required and the initial value for Estimate is
given. Usually, the inivial value for Estimare is taken to be

Number / 2.0 (REALJ2)

I the itcration is performed Irerations times, then a sequential solution may be written as
SEQ
Input 7T Number
Estimate := Number / 2.0 (REAL32)
SEQ Index =0 FOR lterations

Estimate := (Estimate + (Number / Estimate)) / 2.0 (REAL32)
Qutput ! Estimate

196 ;

Written in occam, this becomes

PROC Pipeline (CHAN OF REAL32 InPipe, OutPipe)
WHILE TRUE

REAL32 Number, Estimate :

SEQ
-- accept number and previous estimate
InPipe 7 Number
InPipe 7 Estimate
-- pass on number and new estimate
QutPipe ! Number
OutPipe ! (Estimate + (Number / Estimate)) / 2.0 (REAL}2)

Finally, the Terminate process inputs the number and final estimate of the square root from the
last pipeline process and outputs this value, Writing this in pseudo-code

WHILE data is available)
SEQ '
RECEIVE a number and final square root estimate from last pipeline
process
QUTPUT this number and final estimate as results

t

In occam, this becomes . ;

PROC Terminate (CHAN OF REALJ2 Earract, Qutput)
WHILE TRUE

REAL32 Number, Root :)

SEQ
-- extract number and root (final estimaie) from pipeline
Extract 7 Number
Exuact ? Root

- -- output results

Output ! Number
Quitput ! Root

The main process will comprise a PAR construction containing instances of [nitialise, Pipeline
and Terminate. The Pipeline process is replicated the desired number of times.

— - . -a e on o

[N ae e e e eI

197

PAR
Initiatise {(InChan, Pipe [0})
PAR Index ~ 0 FOR lierations
In IS Pipe [Index] :
Out IS Pipe [Index + 17
Pipeline (In, Qut)
Terminate (Pipe [lterations], OutChan)

The amounts of computation required for the sequential and parallel solusions are the same,
However, the benefit derived by expressing the sequential algorithm as a parailel onc accrues
only when there are many numbers requiring the calculation of their square roots. The partial -
estimates for these numbers may all be within the pipeline a: the same time (depending on the
length of the pipeline) - each pipetine process can be calculating a different partial estimate.
The automatic synchronisation of occam ensures the correct order of communication and,
hence, the correct order of computation.

Other examples of the use of this approach are sorting (Pountain and May], prime number
generating [Burns], systolic amay processing [Jones and Goldsmith), compiling and solid
modelling (May and Shepherd].

11.2 Geometric parallelism

Wuth this approach, parallelism is inwroduced by making use of any regular spadal geometry or
structure present in the probiem. Rather like a large cube may be divided up into a number of
smaller constituent cubes, so the spatial geomewy of the problem is divided up in some
symmetrical fashion, assuming a uniform distribunon of data over the geomeny, to allow a
more tractable solution to be expressed. Each of these small units acts as a quasi-independent
entity, responsibiz for the daia in its own spatial region. The computation performed by each
small unit is sumuned to give an overall effect. Interactions between neighbouring units may
be incorporated 1o give a more realistic solution. This approach is also known ns deta structure
decomposition.

Each small unit is modelled by an identical occam parallel process, each parallel process
operating on the data relevant to its own domain. Interactions between nearest neighbours may
be introduced with occam chaniels connecting the neighbouring units. The communications
overhead between these communicating processes may become quite appreciable.

An example of the geometric approach is its use in the simulation of thermal conduction in a
two-dimensional rectangular metal plate which is being heated by a heat source at 2 cenain
point. Simulation of thermal conduction over the whole plawe is difficult. So, to simplify the

problem, the geometry of the situauon is utilised and the plate is subdi into a number of

194

Inital New New
Estimate

Root

Estimate

lteration lteration Iteration
0 T | .] 01 -

Figure 11.1 A pipeline of processes to calculate the square root of a number
using the Newton-Raphson method

The Newton-Raphson procedure may be written in a concurremt form by considering each
iteration as an occam parallel process. Each of these processes accepts the number and
previous estimate as input, calculates the new estimate and produces the number and new
estimate as output (Figure 11.1). Thus the approximanon lechnique may be written as a
pipeline of identical processes with the necessary innialisation and terminauon processes. The

pipeline may be generated with a replicated PAR statement. The top level of the program will
have the following form

global declarauens
procedures compnsing
trutialisation process
Pipeline processes
Terminatnon process
main process

The global declarations comprise the channels for the pipeline processes and the channels for

the initialisation and termination processes. Assuming 50 iterations, this section may be
written as

-- global declaranons

YAL lcrations IS SO :

[Tterations + 1] CHAN OF REAL32 Pipe:
CIHIAN OF REALJ32 InChan, OuiChan :

hmi ot e wmm e taeer mh g b WA Teat a e el . . e e A R T

J—
195

The Initialise process inputs the number whose square root is required, and outputs the value

of this number and initial square root estimate 1o the first pipeline process. This may be
expressed in pseudo-code as

WHILE data is available
SEQ
INPUT a number

SEND this number and initial square root estimate to first pipeline
process

In occam, this may be written as

: PROC Initialise (CHAN OF REAL32 Input, Inject)
WHILE TRUE

REALJ32 Number :

SEQ))
Input ? Number i
-- feed number and initial estimare into pipeline
Inject ! Number
Inject ! Number / 2.0 (REAL32)

As indicated previously, the pipeline compnrises lterations identicai processes which are
generated with a PAR replicator. Each of these processes inputs the number and the previous
estimate from the preceding pipeline process and outputs the number and new esnmate to the
succeeding process. Expressed in pseudo-code, this becomes

WHILE data is available
SEQ
RECEIVE a number and previous square root estimate from preceding
pipeline process
SEND this number and new square raot estimate 1o next pipeline process

- e e e e 4 mae e s mae b tmen s Gmye e At b e MRS FL LT LA el =Rk VLT R) Nt bt W e VT AT crmasTg P TS

198 '

rectangular areas - these areas being the quasi-independent units which will be represented by
occam processes. The heat conduction i.c. temperature of each of these arcas may be
estimated and summed to give an approximate effect for the heal conduction over the whole
plate. The temperature of each arca will depend on that of its surroundings ie. the
ncighbouring areas. It is assumed that ane of the areas contains the heat source.

For the example, consider a metal plate, n by m units (Figure 11.2). The program is reguired
to monitor the temperature at the cenwre of each of these areas, Also, for the example, consider
" that two boundaries (top and lefi-hand side) of the plate are adjacent 1o an infinite heat sink

and that the other two boundaries (bottom and right-hand side) of the plate are adjacent to a Insulator
perfect heat insulator.

Y . ‘ .
i The simulation propram will comprise a set of identical parallel pracesses, each responsible for y ‘
H determining the temperature of one of the areas of the metal plate. This temperature is taken . .
' to be an average of the temperatures of the four neighbouring areas. In addition areas on the y :
boundarnics of the plate will be affected by thc type of adjacent boundary - the hegl sink will i p '
maintain a constant (base) temperature and the heat insulator will reflect the emperature of the y v
boundary areas. These boundary et’fect; will be simulated by exmra parallel processes. y 4
Each plate area will have nine channels - an input and output channel for each of the Sink y : Insulator
neighbouring aress, up, down, left and right pius a result channel (Figure 11.3).. The result y 4
channel commumcates with a monitor process to display the current temperature of each area / :
on the screen, . y 4
There will be n * m processes for calculating the areas’ temperatures plus n + m processes for ; Heat ’
each of the two different boundary effects. This number of processes may be generated by / ' 4
suitable replication of the following processes ' y Source ‘
] -
Sink - simulate the effect of a heat sink H I WU E— '

Insulator - simutate the effect of a heat insulator ;
Source - sirmulate the effect of a hear source Sink
CalcTemp - calculate the temperature of an area. Account must be taken of

the fact that one of the areas will contain the heat source. Figure 11.2 Metal plate subdivided into smaller areas

The tc-)p level of ihie program will have the following form

- global declarations
procedures comprising
Sink
Insulator
Source
CalcTemp
main process

i ——t—— & i o ——

B il IR Y e - Lt

.] :

NPT, SEEVERSTEE T St i

heem tm e Ar mees o tE P amal b el %

200

Assuming a metal plate of dimension 3 by 3 units, the global declarations are as follows

VAL Height IS 3:

VAL Width IS 3:

VAL TwiceHeight IS 2 * Height :

VAL TwiceWidth IS 2 * Width :

VAL Rectangle IS Height * Width :
‘ VAL TwiceRectangle IS 2 * Reciangle :
VAL SourceX 1S 1: :
VAL SourceY 1S %: Upln UpOut -
YAL BaseTemp IS 50.0 (REAL32): '
[TwiceReclangle + TwiceHeight]) CHAN OF REAL32 Horizontal ; ! ¢ T
{TwiceRectangle + TwiceWidth} CHAN OF REALJ32 Vertical :
[Rectangle] CHAN OF REAL32 Result:

e A —— -

The inidal temperature, BaseTemp, is assumed to be 50 degrees. The position of the area
conwining the heat source at its centre is piven by SourceX and Source¥. The areas
communicate via the channels Horizontal, Vertical and Result. The horizontal channels are '
numbered 1n right/left pairs down the columns of the array of areas. The vertical channels are :

. numbered in downfup pairs along the rows of the array. The result channels are numbered b

along the rows (see Figure 11.4 for an examptle of the 3 by 3 array). :

. i LefiQut ~et— -g— Rightln
The Sink process is simulated by maintaymng (outpulting) a constant temperature, regardless of i

the adjacent temperature - the emperature input is disregarded. This constant temperature is
taken to be the initial temperature of the plate. Expressing this in pseudo-code pives

Lefiln —= | RightOut

WHILE simulation is rcquirc& . l T
PAR ’) DownQut Downlin

RECEIVE a temperature of an adjacent area and IGNORE
SEND a constant (base) temperature back to the adjacent area

! Figure 11.3 Channels of a plate area
Written as occam code, this gives !

PROC Sink (CHAN OF REALJ2 In, Qui) '
- left or bottom boundary +
WHILE TRUE
! REALJ32 Any:
N PAR
-- ignore adjacent temperature
In 7 Any
-- output a steady temperature
Qut ! BaseTemp -

S

- . - S A P e
B L . . e e e - P .

202 . C e e e

The Insulator process does not allow any heat to escape - the temperature read from the

adjacent area is returned. Written in pseudo-code, this is

WHILE simulation is required

P I N it

SEQ 0 o e 6 —_— 12 g —to- 18
RECEIVE a temperature from an adjacent area L - 19
: - L 7 - —— |3 .
SEND the temperature received back to the adjacent arca I - | A - 1 | ‘ I A
! Rewriting in occam gives ' [v l v l
: PROC Insulator (CHAN OF REAL32 In, Ow) 6 7 3 9 1 12
1 .
| -- tap or night boundary
WHILE TRUE | A | A L4
REALIZ Temp : Y v v
SEQ N PO N S DU VA R P
. -- input temperature of adjacent area L A) —-— 21
‘ In ? Temp 3 - -~ 9T - " -
- return {ast temperature read | ‘ l A l ‘
Out ! Temp v | Y I ' |
. 21 14 15 16 17
, Process Svurce simulates a heat source by generating a temperature which increases at a steady ‘ A
rate - one degree higher than the previous value. This temperature is transmitted to the l ‘
surrounding areas, ignofing the present temperature of these areas, The heat source will be v I v l
swrounded by four neighbouning areas. Expressing these requirements 1n pseudo-code gives 4 B R 1] —t— 1§ — —— 22
: I — ey} —
WHILE simulation 15 required 5 - — —_——] i 17 = 23
sk 1)
PAR

. RECEIVE a emperature from four summounding areas and IGNORE '
SEND new temperature back to four surrounding areas '
INCREMENT temperature by one degree

| 4
v

22 3

Y

18 19 20 21

Figure 11.4 The arcas and channels for a 3 by 3 array

ke amn -

e wwme

[

it e e -

204

In occam, this may be written
PROC Source (CHAN OF REAL32 Upln, Downlin, Lefuln, Rightln,
UpOQut, DownOut, LefiQut, RightCut,

Result)
VAL Templncrease IS 1.0 (REAL32):
REAL32 Temp:
SEQ

-~ initial condition
Temp ;= BascTemp
WHILE TRUE
-~ QuIpu! New lemperature to four surrounding areas, ignoring any inputs
SEQ -~
PAR
REAL32 Any .
PAR
-- area below
Downlin 7 Any
DownQut ! Temp
REAL32 Any:
PAR
-- area to left
Leftln ? Any
LefiQut ! Temp
REAL32 Any:
PAR
-- area above
Upln 7 Any
UpQut ! Temp
REALJ32 Any:
PAR
== area to right
Rightln 7 Any
RightOut ! Temp
Result ! Temp - output new temperature 1o Monitor
Temp = Temp + Templncrease -- increase temperature of source

(The interactions with each adjacent area have been grouped in separatc PAR constructions for

clarity)

o et e eare e = e crbaa o Pt 1N B M E s P er ek LR T T A ki by 1A L e DA T 4 D R bS] T RPN T

205

Process CalcTemp will calculale the rise in wemperature of each area due to the temperature of
the neighbouring areas. Account must be taken of the fact that one area will contain e heat
source. Written in pseudo-code, this is
IF area =~ heat source THEN
GENERATE temperature rise
ELSE
WHILE simulation is reguired
SEQ
PAR
RECEIVE the temperature of four surrounding areas
SEND the temperature of this area to four surrounding areas
CALCULATE new temperature of this area, based on \emperature
rises of surrounding areas

Expressing this pseudo-code in occam,
. I
PROC CalcTemp (BOOL HotSpot,
CIHIAN OF REAL32 Upln, Downln, Leftln, Rightin,
UpOut, DownOut, LeftCut, RightOut,
Result)
IF
-- if area contains heat source
HotSpot
-- generate lemperature rise
Source (Upln, Downln, Lefiln, Rightn,
UpOut, DownOut, LeftOut, RightQut, Result}
TRUE
-- area does not contain heat source
REALJ32 Temp:
SEQ
- initial conditions
Temp := BaseTemp

a e A o A mes v e e

206

WHILE TRUE
REALJ2 SumOfTemps, MeanTemp,
UpTemp, DownTemp, LefiTemp, RightTemp,
DeltaUp, DeltaDown, DeltaLeft, DeltaRight :
SEQ '
-- interact with neighbouring areas
PAR
-- area below
PAR
Downin ? DownTemp
DownQut ! Temp
-- area to the left
PAR
Lefiln 7 LefiTemp
LeftOut ! Temp
— area above
PAR
Upla ? UpTemp
UpQut ! Temp
-- area to the right
PAR
Rightln ? RighiTemp
RightOut ! Temp
DeltaDown := DownTemp - Temp
Deitaleft ;= LeftTemp - Temp
DejtaUp := UpTemp - Temp
DeliaRight ;= RightTemp - Temp
-- now average these temperatures to find mean rise
SumOfTemps = ({(DeltaUp + DeitaDown)
+ Dehaleft) + DelaRight
MeanTemp := SumQfTemps / 4.0 (REALID)
-- increase temperature by half average temperature rise
Temp := Temp + {MeanTemp / 2.0 (REAL32))
-~ output the result to Monitor
Result ! Temp

T N T b P

PR

207

Process Monitor will be responsible for keeping a record of the lemperature of each area, and
displaying this iemperature on the screen, Expressing this in pseudo-code gives

WHILE simutation is required
SEQ
PAR
INPUT temperature from each area
SEQ
IF temperature <> last temperature from each area THEN
DISPLAY temperature

Writing this in occam gives

PROC Monitor (|] CHHAN OF REAL32 Resuit)
[Rectangle] REAL32 LastTemp :
SEQ
-- initialise array holding temperatures
SEQ Index = 0 FOR Rectangle
LastTemp |{Index] := 0.0 (REAL3Z)
[Rectangle) REAL3I2 Temp :
WLILE TRUE
SEQ
-- input temperature of areas
PAR Index = 0 FOR Recuangle
Result [Index] 7 Temp [Index]
SEQ Index = 0 FOR Reciangle
-- check for a temperature change
1F
- Temp {Index] <> LasiTemp [Index}
E INT Row, Col :
SEQ
-~ display new temperature
Row := Index / Width
Col := Index REM Width
Display ! Row ; Col ; Temp |index]
LastTemp {Index] := Temp [Index]
TRUE
SKIP

- .o ‘.z»a._,a..-dé

IR R PR e -3

LUy

The overall structure of the main process will be an outer PAR enclosing the requisite number
of instances of CalcTemp, Sink and fnsulator processes. In addition there will be an instance
of the Monitor process. Thus the main process may be expressed in pseudo-occam as

PAR
Monitor process
n* m CalcTemp processes
n+m Sink processes
n + m Insulator processes

This process may be rewritten in terms of nested replicated PARs (assuming n rows by m

columns of rectangular areas - the index Row moving from top to bottom, the index Column
maving from left 1o right) as follows

PAR
. Monitor process

PAR Row =0 FOR n -- lefi-hand side areas
Sink process

PAR Cotumn«0 FOR m
PAR

-~ top side arcas
Insulator process

-- middle areas
PAR Row =0 FOR n

CalcTemp process

-- bortom side areas
Sink process

PAR Row =0 FOR n - right-hand side aseas
Insulator process

O b - e nte -

o —

Using the (more meaningful) constants Height (for n) and Width (for m) as specified in the
global declarations, this may be rewritien as

PAR
Monitor (Result)
PAR Row =0 FOR Height - left-hand side areas
VAL Out IS Row + Row:
VAL In IS Out+ 1:
Sink {Harizontal {In], Herizontal [Owt])

PAR Col -0 FOR Width
PAR
-~ top side areas
VAL Out 1S Col + Col :
VAL In IS Out+1:
Insulator (Venical [{n], Verucal [Out])
-- middle areas
PAR Row =0 FOR Height
VAL Up 1S {(TwiceWidth * Row) + Col} + Col :
VAL Down IS ((TwiceWidth * (Row + 1)) + Col} + Col :
VAL Left IS ((TwiccHeight * Col} + Row) + Row :
VAL Right IS ((TwiceHeight ¢ (Col + 1}) + Row) + Row :
VAL Hot 1S (Row = SourceY) AND (Col = SourceX) :
SEQ
CalcTemp (Hot,
Vercal (Upl.
Verucal [Down .+l],
Horizontal {Lefi],
Horizontal [Right + 1],
Vertical (Up + 1),
Vertical [Downl],
Horizontal [Lefi + 1},
Horizonal {Rightl,
Resuit [(Width * Row)} + Coll]}

- . §

S

|

T T I P

210

-- bottomn side areas

VAL In IS (TwiceRectangle + Col) + Col :
VAL Qut IS In+1:

Sink (Vertical [In], Vertical [Out]}

PAR Row = 0 FOR Height -- right-hand sidc areas
VAL In IS (TwiceRectangle + Row) + Row :
VAL Cut 1S In+1:

Insulator (Horizontal |In], Horizontal [Out])

Other examples of the use of this approach are the modelling of a statistical "spin” system as
may be found in liquid crystal films [Askew e al.].

11.3 Process farming

The farm approach is applicable to problems whose solution will succumb to a decomposition
into many smaller parts and where these pans are independent of each othcr. As the pans are
independent, each may be executed concurrently, in isolation, and the effect summed to pive a
solution to the whole problem. The solution is analogous to a farmer supervising the toil of

many farm workers, each worker performing any given task 1n isolation from the other workers
- hence the name.

A farm is modelled by a set of occam processes. Onc process is nominated the farmer The
farmer process controls the orgamisation and allocation of work. The controlling process furms
or hands out work to its subordinate worker processes. The worker processes are modelled as
identical paralle! occam processes. As and when each worker process completes the given
task, the farmer process will issue further work for compietion. Thus a farm of worker

processes toil away on pans of the problem, finishing one task and stanting another, untii the,
. whole problem is complete. Typically liule inter-process communication is needed in such
applications. However, depending on the number of worker processes and their configuration, ~
for example whether they are organised in a linear or tree fashion, the routing of messages

between the farmer and workers may well cause communications overhead problems.

An cxample of the process farm approach is its use in producing a graphical representation of
the Mandelbrot set, or more exactly, a graphical representation of those points which lie within
and without the Mandelbrot set |Bamnsley er al., Peitgen and Richierf. This set comprises all
complex numbers, ¢ = a + ib, for which the recurrence relation

z,=2zl+c forn=0,1,2... (1.

converges to a finite complex number (where z, and z,,; are complex numbers computed in

- er———— ————— — W2

© e bt ———

211

successive iterations of the recurrence relation, and zg = 0 is the initial condidon). It can be
demonstrated that, if for some n,

Izl >2

then the iteration diverges and hence ¢ does not belong to the Mandelbrot set

In practice, the iteration is performed a given number of times, m, and ¢ is considered to
belong to the Mandelbrot set, M, if

lzgl <2 foralln<m {1.2)

The graphical display of the members of M produces quite vivid and intriguing self-similar
shapes known as fractals,

For display purposes, the complex number, ¢ = a + ib, is taken 1o be a graphics screen pixel
with coordinates {a,s} - the graphics screen representing the complex plane. For every screen
pixel the recurrence relation is applied. If the pixel belongs to the Mandelbrot set, it is
coloured black, otherwise it is allocated a colour from the graphics paletic which is graded

according to the speed at which the itcration diverges i.e. the smallest natral number a < m
for which |z, | 2 2.

Such computation is quile intensive for a suitable number of ircrations and. depending on the
size of the graphics screen and hence the number of pixeis, nceds to be performed a large
number of times. The acrual computational task to be performed for each pixel is the same but

the amount of computation will vary depending on whether or not the sequence of recurrence
values for that pixel converges or diverges.

The general form of a farm in terms of pseudo-occam is as follows

globatl declarations
PAR
Farmer process
PAR Index = 0 FOR NumberOfWorkers
Worker process

Each worker process accepts data from the farmer process, works with this data and then sends
the result back to the farmer process, becoming available to accept more daw. In the current

context this work will be the calculation of the recurrence relauon for the given daw i.e. pixel
coordinates {a,b). '

L
PR - 3

P R A

—

21z

Assuming a graphics area of 512 by 512 pixels, with 50 workers, the global declarations
section may be written as

YAL NumberCfWorkers IS 50:
VAL NumberOfPixels IS 512 * 512
PROTOCOL RAW .
CASE
Data ; {2] INT
Terminate

PROTOCOL PROCESSED
CASE
Results ; [2) INT ; INT
Quit
{NumberQfWorkers + 1] CHAN OF RAW ToFam ;
[NumberOfWorkers + 1] CHAN OF PROCESSED FromFarm :

The channnels, ToFarm and FromFarm, allow the Farmer process to send data to the Worker

processes and receive results from the Worker processes. The protocols, RAW and
PROCESSED, will be explained shorily.

In peactice, 10 improve the efficiency irade-off between computation and communications, each
worker would be given a line of pixels as data. The processor overhead seding up a
ransmission over a wansputer link 1s the same for many bytes as for a few bytes. (Once a
data wansfer has been initiated, the transfer of data over the link is automonous of Lhe
processor.) For simplicity, this example considers the data o be a single pixel. Also in
practice, it may be advantageous to have a division of labour in the farmer process, having a
farmer process proper and & separaie graphics process. The function of the farmer process
would be 10 hand out pixe! coordinates to the worker processes, whilst thut of the graphics
process would be to accept the results (pixel coordinates and colour) and display them on the
graphics screen,

Rather than allowing a worker process to idle whilst the farmer issues new work, the worker
process may buffer an exwra unit of work so that it may proceed immediately with this new
work once it has completed the previous work. This scheme keeps the workers constantly
busy [Packer).

Logically, each worker process may be connected via a channel to the farmer. Praciically,
since the transputer has only four links and if the workers are distnibuted over several
transputers, there may be many tiers of worker processes. Because of this, each worker
process will not just be concerned with the iteration of the recurrence relation. It will also act
as 8 message Switch, passing on data to processes further down the farm. The whole farm

213

process becomes self-regulating, message passing being synch_roniscd by the occam
inputioutput primitives. In addition to forwarding work to outlying workers, the worker

process will gather results from these workers for onward delivery to the farmer (or graphics)

process. .
Each worker process will comprise three processes - Swirch, Feedback and Mandelbrot (Figure
11.5). This arangement may be expressed in pscudo-occam as

PROC Worker
PRI PAR
PAR
Switch process
Feedback process
Mandelbrot process

This arrangement of processes in the PRI PAR construction cnsures a high u-uroughpu: for
communications. This is important for processes which may use the transputer links, so that
messages are ransmitted without delay. 1f a high priority process was not u.scd. the mcssag}e
would not be examined unul the message switch was scheduled by the low prionity mund-rc!:m
scheduler of the transputer {May and Shepherd].

Tagged protocols, RAW and PROCESSED, are defined for the data which is sent to and
received from the worker processes. The tag Daia of protocol RAW comesponds to the wansfer
of two integers (a pixet), whilst the tag Resulis of protocal PROCESSED corresponds o the
wansfer of three ntegers (a pixel and its colour). In addution, each of these protocols has a tag
which is used to pass a IEfMMIRAnON nooce 10 the participaung processes at the end of the
caiculadon,

The Worker process may now be rewritten with the addition of channels.

PROC Worker (CHAN OF RAW FromPrevious, ToNext,
CHAN OF PROCESSED ToPrevious, FromNeal)
CHAN OF BYTE MoreWork :
CHAN OF RAW Work:
CHAN OF PROCESSED WorkDone :
PRI PAR
PAR
Switch (MoreWork, FromPrevious, ToNext, Work)
Feedback (ToPrevious, FromNext, WorkDone)
Mandelbrot (MoreWork, Work, WarkDonce)

The Switch process is responsible for accepting pixels (work) from the Farmer process,

e vy

buffering a pixel for its Mandelbros process, and forwarding eacess wark to waorkers further

[

214

down the farm. Expressing this in pseudo-code gives

WHILE pixels are available
ALT
RECEIVE request from mandelbrot far ancther pixel
IF buffer = full THEN
SEND buffered pixel 1o mandeibrat
ELSE
‘ SET mandelbrot = idle
! RECEIVE pixel from farmer MoreWork
k IF mandelbrot = idle THEN
SEND pixel to mandelbrot
ELSEIF buffer = empty
BUFFER pixel
ELSE
SEND pixel 1o next worker

FromPrevious ToNext

Work

Mandelbrot

Such a structure with more than one input to react to may be conveniently programmed using
an ALT construction, The actwal code will be slighty more complicated than the above
pseudo-code owing 1o the need to waich out for and pass on the termination notice to the
Mandelbrot process and the next worker. This is just a matier of reacting to the relevant tag of
the channel protocol. The occam for the process is

WorkDone

PROC Switch (CHAN OF BYTE MoreWork,
CHAN OF RAW FromPrevious, ToNext, Work)
BOOL Busy, Buffered, Running :
SEQ
Busy := FALSE
Buffered := FALSE
p :?:;::E ;::,ﬁg OR Busy Figure 11.5 The component processes of a worker process
. [21 INT Coords, BufferedCoords :
- BYTE Any:
ALT
1 -- mandelbrot requesting more work .
Busy & MoreWork 7 Any
IF
' Buffered -- check for buffered work
-- pass mandeibrot the buffered work
SEQ
Work ! Data ; BufferedCoords
Buffered :« FALSE

FromNext

ToPrevious

mJ 5 vt s ARtk e - e -

B v e

TRUE -- no buffered work
Busy := FALSE
—~ a message from the farmer
Running & FromPrevious ? CASE
Daia ; Coords — another pixel

IF
NOT Busy - check if mandelbrot busy
SEQ
' Work ! Data ; Coords
Busy := TRUE
NOT Buffered -- check if pixel buffered
SEQ

BufferedCoords ;= Coords

Buffered ;= TRUE '
TRUE -- pass on pixel

ToNext { Data ; Coords

Terminate -- (ermination notice
Running := FALSE .
ToNext ! Terminate - pass on termination notice

i
I
Work ! Terminate }
1

In the above process, the boolean vamable, Running, records whether or not a termination
notice has been received from the farmer, whilst the boolean variable, Busy, marks whether or .
not the Mandelbrot process is processing a pixel. The Mandelbrot process performs the ’
iteration procedure for a given pixel and assigns that pixel a colour dependent oa the degree of
convergence. With a linle rearrangement the recurrence relation may be simplified for
computation. Substituting z = x + iy, then equation (11.1) may be wrinten as

Keet = %3 =yl + 2

and

Yael = 2npya + b

Since

| zo01 § @ Vg + Yooy

the condition for Mandelbrot set occupancy - equauen (11.2) - may be wrinen as

1
"Eu * Youl 54

Pixels are passed from the Swirch process each time the Mandelbror pracess completes the
previous calculadon and requires more work. Completed work, in terms of the pixel colour, is

passed on to the Feedback process. In pseudo-code, this gives

WHILE pixels arc available
SEQ
RECEIVE pixel
loop:
CALCULATE next iteraton of recurrence relation
IF iteration count = maximum THEN
ASSIGN black to colour
EXIT
IF modulus squared > constant THEN
ASSIGN count 10 colour
EXIT
SEND pixel and colour to feedback

R At Sem

217

Agan the sctual code will be complicaied by the termination condition. This time the
termination notice is passed on to the Feedback process. Expressed in occam (assuming a
graphics palette of 256 colours, with the colour black having a value of 0, and a maximum

number of iteranons of 255), this gives

PROC Mandelbrot (CHAN OF BYTE MoreWork,
CHAN OF RAW Work,
CHHAN OF PROCESSED WorkDone)
BOOL Running :
SEQ
Running := TRUE
WHILE Running

BYTE Any:
(2} INT Coords :
SEQ

-- ask for some work

MoreWork ! Any

Work 7 CASE

Data ; Coords — next pet of coordinates
VAL Constant IS 4.0 (REAL32):
> VAL Two IS 2.0 (REAL32):

VAL Maxlterations 1S 255:
VAL Black 150
REALJ2 A, B, X, Y, ZSquared :
INT Colour, Count :

SEQ
A = Coords (0]
B := Coords [1]
X := 0.0 (REAL32)
Y = 0.0 (REAL32)
Count := 0
ZSquared := 0.0 (REAL32)
~ calculaee next iteration of recurrence relation
- and test for divergence
WHILE (Count < Maxlterations) AND (ZSquared <= Constant)
SEQ
X =((X*X)-(Y*YD+A
Y u(Two*(X*Y) +B
ZSquared ;= (X * X) + (Y * Y)
Count := Count + 1
1F
Count = Maxlterations -- pixel in Mandeibrot set
Colour := Black
ZSquared > Constamt -~ el outside Mandelbrou set
Calour := Count
WorkDone ! Results ; Coords ; Colour -- send results back
Terminate -+ termination notice
Running := FALSE
WorkDone 1 Quit -- pass on the lerminalion nouce

The Feedback process multiplexes the results from its Mandelbror process and those received

from other workers on the farm, and feeds them back to the Farmer process. Putting this in
pseudo-code -

WHILE pixels are available
ALT
RECELVE pixel and colour from our warker
SEND pixel and colour back to graphics process
RECEIVE pixel and calour from other workers
SEND pixel and colour back o graphics process

The code may be succinctly expressed in occam using an ALT construction. This time the
weatment of the terminating condition needs more effort. The termination notice is only passed
on when one has been received from both the local Mandelbrot process and the next worker
[Jones and Goldsmith}. i

219

PROC Feedback (CHAN OF PROCESSED ToPrevious, FromMext, WorkDone)
[21 INT Coords :

INT Colour :
BOOL Local, Other :
SEQ

Local := TRUE !

Other := TRUE

WHILE Local OR Other

ALT
Local & WorkDone 7 CASE
Results ; Coords ; Colour -- results from our worker

ToPrevious ! Results ; Coords ; Colour -- pass back to farmer
Quit .- termination notice from our worker
Local ;= FALSE
Other & FromNext 7 CASE
Results ; Coords ; Calour -- results from another worker
ToPrevious ' Results ; Coords ; Colour -- pass back to farmer
Quit - termination notice from next worker
Other := FALSE
TaPreveous ! Quit -- pass on terminanon notice

In the above process boolean variables, Local and Oiher, record whether or not a termination
nouce has been received from the local worker or another worker respectively. Only when a

wermination notice has been received from both these processes does the Feedback process
terminate.

A simplistic farmer process, which assumes that the farm is arranged as a chain of worker
processes, is presented below. The farmer sends each pixel to the first worker in the chain for
redistnbution, The farm is primed by issuing 2*NumberOfWorkers pixels to the work force.
This amount of data just fills up cach worker and each buffer. As ecach pixel is reported
processed, another pixel is issued 10 the farm, unul all the pixels have been processed [Atkin].
Al this point a termination nolice is issued to the farm of worker processes and the farmer
waits to receive this back before finally terminating itself. In pscudo-code this is

PRIME farm with pixels

loop:
RECEIVE completed work from farm
SEND another pixel to fram

UNTIL pixels exhausted

fue

220

The termination notice will pass down the chain of worker processes via the switch processes
causing cach switch process (o terminate on receipt, Before terminating, each switch process
will inform its mandelbrot process to terminate, which in turn will inform the feedback process
of a local iermination. When the termination notice reaches the end of the chain of worker
processes, it must be rerurned to the farmer process via the feedback processes, causing each
feedback, process (o tcrminate (provided the local termination has also been received). Writing
this in occam gives

PROC Farmer (CHAN OF RAW ToWorker,
-CHAN OF PROCESSED FromWorker)
INT WorkDone, WorkWanted :
BOOL Running, Terminating :
SEQ
-- prime the farm
SEQ Index « 0 FOR 2 * NumberOfWorkers

-- send pixel (row and column)

ToWorker ! Data ; {Index / $12, Index REM 512]
WorkDone := 2 * NumberQfWorkers
WorkWanted 1= 0
Running := TRUE
Terminating = FALSE
WHILE Running

INT Colour:
[2] INT ResultCoords :
PRI ALT
FromWorker 7 CASE
Resuits ; ResuliCoords ; Colour
SEQ

-- receive completed work

. - plot result

WorkWanted := WorkWanted + 1
Quit - termination notice returned
Running := FALSE

221

(WorkWanied > 0) & SKIP
IF .
WarkDone < NumberOfPixels
SEQ
-- send another pixel
ToWorker ! Data ; {Index / 512, Index REM 512}
WorkDone = WorkDone + 1
WorkWanied 1« WorkWanted - 1
. NOT Terminating
SEQ
Terminating 1= TRUE
ToWorker ! Terminate -- issu¢ terminacaon notice to farm
TRUE)
SKIP

In the above process, the variable WorkDone keeps a count of the number of pixels processed,
while the variable WorkWanted keeps a count of the number of pixels required to top up the
farm.

The main process will comprise a PAR conswruction containing instances of the Farmer
process and a number of replicated Worker processes. The last worker in the chain is a special
case as it has no one else further down the chain to communicate with. A dummy process,
EndStop, is provided to match the channels of this last worker so thcy are nat left dangling.
This dummy process accepis the termination notice from the switch process of the last worker
(protocol RAW) and and gentrates a ncw one to pass back down the chain of feedback
processes to the farmer (protocol PROCESSED) [Jones and Goldsmith). ’

PAR
Farmer (ToFarm [0], FromFarm [0])
PAR Index = 0 FOR NumberOfWorkers
Worker (ToFarm [Index], ToFarm [Index + 1],
FromFarm [Index), FromFarm [index + 11)
EndStop (ToFarm {NumberQfWorkers), FromFarm [NumberOfWorkers])

P

|

2w e e

LLL

An alternative to the dummy process approach is to treat the last worker separately [Packer].
This approach requires that the protocols RAW and PROCESSED be combined into one
protocol, COMBINED, say.

PROTOCOL COMBINED
CASE
Data ; [2] INT
Results ; 2] INT ; INT

Terminate

This means, of course, that the process and channel declarations, and the 1ag input and oulputs
must be altered accordingly. For example, the Worker process becomes

PROC Worker (CHAN OF COMBINED FromPrevious, ToNext,
ToPrevious, FromNeat)
CHAN OF BYTE MoreWork :
CHAN OF COMBINED Work, WorkDone :
PRI PAR
PAR
Switch (MoreWork, FromPrevious, TaNext, Work)
Feedback (ToPrevious, FromMNext, WorkDone)
Mandelbrot (MoreWork, Work, WarkDone)

and the Feedback process becomes

PROC Feedback (CHAN QF COMBINED ToPrevious, FromNext, WorkDone)
(2} INT Coords :
,INT Colour :
BOOL Local, Other :
SEQ
Local := TRUE
Other := TRUE
WHILE Local OR Other
ALT
Local & WorkDone ? CASE
Resubs ; Coords ; Colour - resulis fram our worker
ToPrevious ! Results ; Coords ; Colour -- pass back to farmer
Temminate -- termination notice from our worker
Local := FALSE

Other & FromNext ? CASE
Results ; Coords ; Colour -~ results from another worker
ToPrevious ! Results ; Coords ; Colour -- pass back to farmer
Terminate -- termination notice from next worker
Other := FALSE

ToPrevious ! Terminate -= Pass On 1emMination notice

A special channel, LoopBack is declared as follows’
CHAN OF COMBINED LoopBack :

This channel is looped back in the last worker process to provide a remurn path for the
termination nolice, ‘

PAR
Farmer (ToFarm [0), FromFarm [0]}
PAR Index = 0 FOR NumberOfWorkers - 1
Worker (ToFarm [Index], ToFarm [Index + 1],
FromFarm |Index], FromFarm {Index + 1]}
Worker (ToFarm |NumberOfWorkers|, LoopBuack
FromFarm {NumberOQfWorkers], LoopBack)

Another example of process farming is its application to ray tracing to generate realistic images
of scenes [Packer}, Such an application requires considerable amounts of processing power. [t

has been shown that the processing speed 1s directly proponional 1o the number of transputers
used for this generation. of images.

11.4 Efficiency factors

Even after designing a parallel algorithm, there are a number of competing factors to be taken
into consideranion for an efficient implementation.

e processor conncclivity - the transputer has only four physical links.
Depending on the disuibution of processcs on processors, communications
between processes may need to pass through several intervening transputers.
This routing of messages imposes an extra overhead on e¢ach wanspuier, and
the balance berween computation and communicition needs to be carcfully
assessed.

» processor loading - the processing load of each transputer in - “ework must

224

be taken into consideration. The system is likely o run at the speed of the
rransputer with the highest processing load, as the other wransputers in the
system will probably be held up, waiting 1o communicate with this transputer.
So the processing load should be shared as evenly as possible among the
available transputers, and not lcft 1o chance or haphazard placement. The farm
spproach semi-dynamically balances the load for each processor, since a
processor only receives more work when it becomes idle, The algorithmic
approach needs especial care, as an overloaded processor may create a
bottleneck in the pipeline or whatever configuration is chosen.

®» processor type and memory - there are different types of ransputer available
with different word sizes and floaung point capabilices. The choice of
tansputer for & particular function within 4 network needs to be carefully
considered to maich applications with suitable processors, For example,
computation-bound tasks involving floating-point operations will cbviously
benefit from the use of a T80 processor. As regards memory, the program
memory requirement must be balanced againgt the use of internal memory (fast
but finite) and external memory.

3

M¢étricas de Desemperfio

ARG

Measuring Parallel Processor

Performance

Many metrics are used for rmeasuring the performance of a parallel
algorithm runming on a parallel processor. This article introduces a new
metric that has some advantages over the others. Its use is illustrated
with data frormn the Linpack benchmark report and the winners of the

Gordon Bell Award.

Alan H. Karp and Horace P. Flatt

There are many ways to measure the performance of a
paralle] algorithm running on a parallel processor. The
most commonly used measurements are the elapsed
time, price/performance. the speed-up. and the elfi-
ciency. This article defines another metric which re-
veals aspects of the performance that are not easily
discerned from the other metrics.

The elapsed time to run a particular job on a given
machine is the most important metric. A Cray Y-MP/1
solves the order 1,000 linear system in 2 17 seconds
compared to 445 seconds for a Sequent Balance 21000
with 30 processors [2]. If you can aflerd the Cray and
you spend most of your time factoring targe malrices,
then vou should buy a Cray.

Price/performance of a parallel system is simply the
elapsed time for a program divided by the cost of the
machine that ran the job. It is important if there are a
group of machines that are “fast enough.” Given a fined
amounl of money, it may be lo your advanlage to buy a
number of slow machines rather than one fast machine.
This is particularly true if you have many jobs to run
and a limiled budget. In the previous example, the
Sequent Balance is a superior price/performer than
the Cray il it costs less than 0.5 percent as much. On
the other hand, if you can’t wait 7 minutes for the
answer, the Sequent is not a good buy even if it wins
in price/performance.

These two measuremenls are used (0 help vou decide
what machine to buy. Once vou have bought the ma-
chine, speed-up and efficiency are the measurements
often used 10 let you know how effectively vou are
using it.

The speed-up is generally measured by running the
same program on a varying number of processars. The
speed-up is then the elapsed tine needued by 1 proces-
sor divided by the time needed on p processurs, s =
T{(M/T(p). (Of course. the correet time lor the unipro-
cessar run would be the time for Lthe best senal slgo-
rithm. but almost nobody bothers 1o wrile two pro-
grams.) Il vou are interested in studyving alsonthms for

4 Fd) AN OO TS 0 OMEE O ST T

May 1990 Volume 33 Numiber 3

-

parallel processors, and system A gives a higher speed-
up than system B for the same program, then you
would say that system A provides belter support for
parallelizing this program than does system B.

An example of such support is the presence of more
processors. A Sequent with 30 processors will almost
certainly produce a higher speed-up than a Cray with
only 8 processars.

The issue of efficiency is related ta that of price/
performance. It is usually defined as

T(1)

e = -

pT(p

{11

A~

Efficiency close lo unity means that you are using your
hardware effectively; low efficiency means that you are
wasling resources. As a practical matter, you may buy a
system with 100 processors that each takes 100 times
longer than you are willing to wait to solve your prob-
lem. If you can code your problem to run at high effi-
ciency, you'll be happy. Of course, if you have 200
processors, you may nol be unhappy with 50 percent
elficiency, particularly if the 200 processors cost less
than other machines that you can use.

Each of these melrics has disadvantages. In fact,
there is important informalion that cannot be obtained
even by looking at all of them. It is obvious that adding
processors should reduce the elapsed time, but by how
much? That is where speed-up comes in. Speed-up
close o linear is good news, but how close to linear is
good enough? Well, efficiency will tell you how close
you are getling to the best your hardware can do, but if
your elficiency is not particularly high. why? The new
metric defined in the following section is intended to
answer these questions.

NEW METRIC

We will now derive our new metric. the experimen-
tally determined serial fraction. and show why it is
useful. We will start with Amdahl’s Law {1} which in
its simplest form savs that

Cammunicitiions of the ACM

LETRLT TP

.

PR

et W TP, S

|
v
s
!
i

.

- .
e Articles

540

HN=E+L. (2
p

where T, is the time taken by the part of the program
that must be run serially and T, is the time in the
paralielizable part. Obviously, T(1) =T, + T,. [we
deline the fraction serial, f = T,/ (1} then equation (2)
can be writlen as

Tip) = T()f + H%'J—’ @)

or, in terms of the spced-up s

1-f

=f+T- {4)

[T

We can now solve for the serial [raction. namely

_ /s — 1/p
===

The experimentally deterniined serial fraction is our
new melric. While this quantity is mentioned in a large
percentage of papers an parallel aigorithms, ivis vir-
tually never used as a diagnostic’lool the way speed-
up and etficiency are. Il is vur purpose 10 correct this
situation.

The value of f is useful because equation (2} is incom-
plete. First, it assumes that all processors compute for
the same amount of time, i.c., the work is perfectly load
balanced. If some processors take longer than others.
the measured speed-up will be reduced giving a larger
measured serial fraction. Second. there 1s a lerm
missing that represents the overhead of synchronizing
Processors.

Load-balancing effects are likely to result in an-irreg-
ular change in f as p increases. For example. if you
have 12 pieces of work to do that lake the same amount
of time, you will have perfect load balancing for 2. 3. 4.
6, and 12 processors. but less than perfect load balanc-
ing for other values of p. Since a lurger load imbalance
results in a larger increase in f, you can identify prob-
lems not apparent from speed-up or efficiency.

The overhead of synchronizing processors is a mono-
tonically increasing function of p. typically assumed to
increase either linearly in p or as log p. Since increasing
overhead decreases the speed-up. this effect resulls in a
smooth increase in the serial {raction f as p increases.
Smoothly increasing f is a warning that the granularily
of the parallel 1asks is loo fine.

A third effect is the potential reduction of vector
lengths for certain parallelizations of a psrticular algo-
rithm. Vector processor performancys normally in-
creases as vector length increases except for vector
lengths slightly larger than the length of the vector reg-
Istors. If the parallelization breaks up long vectors inlo
shorter vectors. the time to execule the jub canoan.
crease. This elfect then also leads 10 a smoath increase
in the measured serial traction as the number of pro-
cuessors increases, Howover, large jobs usually have
very long vectors, vector processors usually have only a

(5)

Comnmunasttnns of the ACM

v

few processors (the Intel iPSC-VX is an exception), and
there are usually parallelizations that keep the vector
lengths fixed. Thus. the reduction in vector length is
rarely a problem and can often be avoided entirely.

In order to sec the advantage of the serial fraction
over the other metrics. look at Table I which is ex-
tracted from Table 2 of the Linpack report {2). The
Cray Y-MP shows speed-ups ranging from 1.95 to 6.96.
Is that good? Even if you lock at the efficiency. which
ranges [rom 0.975 to 0.870, you still don't know. Why
does the efficiency fall so rapidly? Is there a lot of
overhead when using 8 processors? The serial fraction,
f, answers the question; the serial fraction is nearly
constant for all values of p. The loss of efficiency is due
to the limited parallelism of the program.

The single data point for the Sequent Balance reveals
that f performs betler as a metric as the number of
processors grows. The efficiency of the 30 processor
Sequent is only 83 percent. Is Lhat good? Yes. it is since
the serial fraction is only 0.007,

The data for the Alliant FX/40 shows something dil-
ferent. Here the speed-up ranges {rom 1.90 (o 3.22 and
the efficiency from 0.950 lo 0.803. Although neither of
these measurements tells much, the fact thal f ranges
from 0.053 to 0.080 does: there is some overhead that is
increasing as the number of processors grows. We can’t
tell what this overhead is due to—synchronization cost.
memory conlention, or what—bul at least we know it
is there. The effect on the FX/80 is much smaller al-
though there is a slight increase in f, especially for
fewer than 5 processors.

Even relatively subtle effects can be seen. The IBM
3090 has a serial fraction under 0.007 for 2 and 3 pro-
cessors, but over 0.011 for 4 or more. Here the reason is
most likely due to the machine configuration: each set
of 3 processors is in a single frame and shares a mem-
ory management unit. Overhead increases slightly
when two of these units must coordinate their activi-
ties. This effect also shows up on the 3090-280S which
has lwo processors in lwo frames. Its run has twice the
serial fraction as does the run on the 3090-200S. None
of the other metrics would have revealed this effect.

Another subtle effect shows up on the Convex. The
4 processor C-240 shows a smaller serial {raction than
does the 2 processor C-220. Since the same code was
presumably run on both machines, the actual serial
fraction must be the same. How can the measured
value decrease? This uppears 10 be similar 1o the
“superlinear” speed-ups reported on some machines, As
in those cases, adding processors adds cache and mem-
ory bandwidlh which reduces overhead. Perhaps that is
the case here.

Care must be used when comparing different ma-
chines. For examplo. the serial fraction on the Cray is J
times larger than on the Sequent, Is the Cray really that
incificient? The answer is no. Since almost all the par-
allel work can be vectorized. the Cray spends relatively
luss timo in the parallel part of the code than does th-
Sequent which has no vector unil, Since the paralle

+ jzable part speeds up more than the serial part which

- Mav fe) Volume 33 Number 3

]

Table). Summary of Linpack report Table 2

Note: p=#processors, s=speed-up, e=elliciency, f=senal fraction

has less vector content, the fraction of the time speat in
serial code is increased.

The Linpack benchmark report measures the perfor-
mance of a compulalional kernel running on machines
wilh no more than 30 processors. The resulls in Table Ii
are laken from the work of the winners of the Gordon
Bell Award [5]. Three applications are shown with
maximum speed-ups of 639, 519, and 351 and efficien-
cies ranging from 0.9965 to 0.3430. We know this is
good work since they won the award. but how good
" a job did they do? The serial fraction ranges from
0.00031 to 0.0019 indicating thal they did a very good
job, indeed.

The serial fraction reveals an interesting point. On all
three problems, there is a significant reduction in the
serial fraction in going from 4 to 16 processors [from 16
ta 64 for the wave mation probiem). As with the Con-
vex results, these numbers indicate something akin to
“superlinear” speed-up. Pechaps the 4-processor run
sends longer messages than does the 16-processor run.
and these longer messages are too long lor the syslem to
handie efficiently. AL any rate. the sgrial frachon has
painted up an inconsistency that needs turther study.

Mav 1990 Voluoe 33 Nwmber 5

Computer p Time(sec) -8 e f
Cray Y-MP/8 1 217 - RS- -
Cray Y-MP/8 2 11 1.95 0.975 0.624
Cray Y-MP/8 3 0754 2.8 0.960 0.021
Cray Y-MP/8 4 0.577 3.76 0.940 0021
Cray Y-MP/8 8 0.312 6.96 0870 0.021
IBM 3090-180S VF 1 1.271 - - — -
1BM 3090-200S VF 2 3.64 2.00 1.000 0.002
IBM 3090-2805 VF 2 365 1.99 0935 0.004
1BM 3080-300S VF 3 2.48 2.96 0.987 0.007
IBM 3090-400S VF 4 1.89 385 0963 0013
18M 3090-500S VF 3 1.52 4.78 0955 0.011
- 18M 3080-6005 VF 6 1.29 5.64 0.940 0.012
Afliant FX /40 1 66.1 — - -
Altiant FX /40 2 348 1.90 0.950 0.053
Alliant FX/40 3 24.9 285 0.883 0.066
Aliiant FX/40 4 20.5 322 0 805 0.080
Alliant FX/80 1 57.7 - — -
Alliant FX/80 2 298 - 1.94 0.970 0.032
Alliant FX/80 3 20.7 2.79 0930 0.038
Alliant FX/80 4 16.2 3.56 0.890 0.041
Alliant FX/80 5 13.6 4.24 0 843 0.045
Alliant FX/80 § 6 ’ 11.8 4.89 0.815 « 0.046
Alliant FX/80 7 106 5.44 0.777 0.048
Alliant FX/80 8 9.64 5.99 0.749 0.048
Sequent 1 1 - - .=
Sequent 30 445 250 0.833 ¢ 0.007
Convex C-210 i 15 - - -
‘Convex C-220 .2 798 1.88 0.940 0.064 -
Convex C-240 q 4.03 3.72 ! 7 0.930 0025

SCALED SPEED-UP
All the analysis presented so far refers 1o problems of
fixed size. Gustafson [4] has argued that this is not how
parailel processors are used. He argues that users will
increase their problem size to keep the elapsed time of
the run more or less constant. As the problem size
grows, we should [lind the fraction of the time spent
execuling serial code decreases. leading us to predict a
decrease in the measured serial fraction.

If we assume that the serizl time and overhead are
independent of problem size, neither of which is fully
justified, [3]

T(p. k) =T, + %ﬂ (6]

where T(p, k) is the time to run the program on p
pracessors for a problem needing k times more arith-
metic. Here k is the scaling factor and k = 1 when p = 1.
Flatt (3 points out that the scaling faclor & must count
arithmetic. not some mare convenient measure such as
memaory size.

Our definition of speed-up must now account for the
additnnal srithmetic that must be done to solve qur

Commumicatums of tie ACM

541

- A N

R

Arlicles

Table Il. Summary of Bell Award winning performance

sleps. A beller scaling would be one in which the lime
integration is continued to a specilic value.

P s . € f If the run time were still held constant. the problems
Wave Mation would scale more slowiy than linearly in p. In thes
4 3.986 0 5365 0.0012, examples, the Courant condition limits the slep size
16 15.86 09913 0 00097 bich means that th ol Ry
64 62 01 09569 0 00051 which means that the correct scaling would be k = V.
956 996.2 0 856 0 00052 The scaling chosen for the problems of Table 11l is
ME 1024 639.0 0 6240 0.00059 k=p.

: Fluid Dynamics As predicted [3]. the efficiency decreases, barely, as p
gk 4 3.959 03898 0.0035 increases even for scaled problems. The scaled serial
! 16 15.47 0 9669 0.0023 fraction, on the other hand, decreases smoothly. This
+i 64 58.53 09145 0.0015 fact tells us that the decreasing efficiency is not caused
1 256 201.6 07875 00011 by a growing serial fraclion. Instead it lells us the
!1 1024 5191 05069 0.00095 problem size is nol growing fast enough to completely

' 4 1954 Beam Slres(s] 9885 0.0039 ca:(oil:igcller the loss of efficiency as more processors are
] z :MB ;? zg ggg?g ggg?g Tha variation in fi as the problem size grows makes
1 256 177.5 0 6334 00017 it difficult to interpret. If e allow for the fact that
; |s 1024 351.2 03430 0.0019 i:eally.lllle inckrease in llhehproblem sliz‘e (lit:)es :Lol algecl

| R _ e serial work, we again have a metric that shou
} i! Note: p=:#processors, s=speed-up, e =eficiency, =senal fraction remain constant as the problem size grows. Table Il
4 shows how kf; varies with problem size. \Ve see that
1 this quantity grows slowly for the wave motion prob-

1 larger problem. We can use J lem, but that there is virtually no increase for the fluid
k i _AT(L 1) ; dynamics problem. These results indicate that the se-

] T) () fal work increases for the wave motion problem as the
E .- ,) problem size grows but not for the fluid dynamics prob-
j Th? scaled‘efﬁcnency is then ¢y = 5 /p. and the scaled lem. The irregular behavior of kf, for the beam stress

3 serial fraction becomes problem warrants further study.

E 1/5i = 1/p

:: fi -1y (8) SUMMARY . ‘

9i We have shown that the measured serial fraction, f.

]! By our previous definitions we see thal f = kfi which provides information not revealed by other commonly
3 under ideal circumstances would remain conslant as p used metrics. The metric, properly defined. may also be
g increases. ‘ useful if the problem size is allowed to increase with

; l The scaled results are shown in Table Iil. Although the number of processors.

these runs take constant time as the problem size What makes the experimentally delermined serial

-g grows, the larger problems were run with shorter lime fraction such a good diagnostic tool of potential per-

" Table lIl. Bell Award scaled problems. k=p)
‘.}i l p Sy €. f kf,
N Wave Mation

A 4 3.998 09995 0.00013 0.00053
EE 16 15.95 09969 0.00020 0.0032
4 64 63 61 0.9939 0 000097 0.0062
11 256 2541 0.9926 0.000029 0.0074
1 1024 1014 Fl0.9%02 0.0000098 0.010
'y ud Dynamics

qi 4 3.992 0.9980 0.00067 0.0027
q: 16 15.96 09975 0.00015 0.0024
¢ 64 63.82 09972 0.000046 0.0029
At 256 255.2 - 0.9969 0.000013 0.0033
,:1' 1024 1020 BO.Q%% 0.0000033 0.0034
q- eam Stress

K 4 4 001 1000 0.0 0.0

3 16 16 00 1.000 0.000021 0.00034
9 64 63.96 09994 0.000015 0.00098
K 256 255.8 0 9992 0.0000038 0.00096
,;j 1024 1023 09990 0.0000012 0.000

Note: p=#processors, s, =scaled speed-up, e, =scaled elhciency. f, =scaled serial fraction

542 Cammnrcations of the ACM Mau 1999 Volume 33 Number 3

A . R B .

formance problems? While elapsed time, speed-up. and
efliciency vary as the number of processurs increases.
the sarial fraction would remain constant in an ideal
system, Small variations from perfect behavier are
much easier to detecl from something that should be
constant than from something that varies. Since k. for
scaled problems shares this property, il, too, is a useful
tool.

lgnoring the fact that p takes on only integer values
makes it easy to show that

== - ©)

if we ignore the overhead and assume that the serial
fraction is independent of p. Thus, we see that the se-
rial fraction is a measure of the rate of change of the
efficiency. Even in the ideal case, 1/e increases linearly
as the number of processors increases. Any deviation of
1/e from linearily is a sign of lost parallelisin. The frac-
tion serial is a particularly convenient measure of this
deviation from linearity.

The case of problem sizes thal grow as the number of
processors is increased is anly slightly more complhi-

cated. In this case P
¥
41 _ d _f{, _p-t L’E)
o hrlPoUL =y (: i ap) 0O

Ifk =1, ie, there is no scaling, equation (10) reduces to
equalion (9). If k = p, then 1/¢ has a slope of f/p* which
is a very slow loss of efficiency. Olher scalings lie be-
tween these two curves.

It is easy to read too much into.the numerical values.
When the efficiency is near unity, 1/s is close to 1/p
which leads to a loss of precision when sublracting in -
the numerator of equation (3} If care is not taken, vari-
ations may appear thal are mere round-olf noise. All
entries in the tables were computed from

_1—1/5
1=1/p°

Since both s and p are considerably greater than
unity and neither 1/s nor 1/p is near the precision of
the floating peint arithmetic, there is only one place
where precision can be lost. Rounding the result Lo the
significance of the reported times guarantees thal the
results are accurate. Similarly,

_1—1/5|‘
1-1/p

is used for the scaled serial fraction.

Although our numerical examples come from rather
simple cases. one of us (Alan Karp) has successfully
used this metric to find a performance bug in one of his
applications. Noiing an irregufority in the behavior of

f=1 (11)

fi= (12)

Mav 1990 Volione 33 Nuntder 3

A

Articles “l'
i

'

led him to examine the way the IBM Parallel Fortran
pralotype compiler was splitting up the work in the
loops. Due to an oversight. the compiler truncated the
resuft of dividing the number of loop iteralions by the
number of processors. This error meant that one pro-
cessor had to do one extra pass to finish the work in the
loop. For some values of p this remainder was small; for
others, it was large. The solution was to increase his
prablem size from 350, which gives perfect load balanc-
ing on his six-processor iBM 3090-6008 only for 2 and

5 processars, 1o 360 which always balances perfectly,
(This error was reparled to the [BM Parallel Fortran
compiler group.)

REFERENCES

1. Amdah). C.M. Validity of Lhe singlie processor approach to achieving
large scale compuler capahilities. In Proceedmys of AFIPS Sprng foint
Compuler Conference, 30, Atlanuc City, NJ, 1962

2. Dongarra,).). Performance of various computers using standard lin-
ear equation software. Report C5-89-85, Compuler Science Depart-
ment, Univ. Tennessee, Knoxville, Gctober 12. 1989.

3. Flatt, H.P.. and Kennedy, K Performance of parallel processors. Par-
allet Comput. 12, (Ocl. 1989), 1-20

4. Gustalson,].L. Reevaluating Amdabi’s Law, Commun, ACM 31,5
{May 1988), §32-533 -

5. Guslafson, |.L.. and Montry. G.R.. and Brenner. R.E. Development of
parallel methods for a 1024-processar hypercube. SIAM Scr. Stat.
Comp. 9, (july 1968), 609-638,

CR Categories and Subject Descriptors: C.1.2 |Processor Architec.
tures). Multiple Data Siream Architectures (Muliiprocessars)—parallel
prucessors; C.4 [Compuler Sysiems Organization). Performance of Sys-
lems—wicasurerient techuiques -

General Terms: Measurement. Performance =

Additional Key Words and Phrases: Parallel performance

ABOUT THE AUTHORS: ¢

ALAN KARP is a stalf member al 1BM’s Palo Allo Scieatific
Center. He has worked on problems of radiative lransfer in
moving slellar matter and in planetary atmespheres.-hydro-
dynamics problems in pulsating stars and in enhanced oil
recovery. and numerical methods for parallet processors. He
is currently studying the interface betiveen programmers and
parallel processors wilh special altention to debugging parallel
algorithms.

HORACE P. FLATT Is manager of IBM's Palo Alto Scientific

Center. Ho received a Ph D, in mathematics [rom Rice Univer-

sity in 1958, subsequently becoming manager of the apptied

mathemalics group of Alomics International. Inc. He joined

IBM in 1961 and has primarily worked in management assign-

ments in applied research in computer systems and applica- .
tions. Authors’ Present Address: 1BM Scientific Center, 1530

Page Mill Road. Pala Alto, CA 94304,

Permussion to copy withoul fce all or part of this material is granted
pravided (hat the copics are nol made or distributed for direct commer-
aial advantagye, the ACM copyaghl avtice and the tnle of the publicaton
and iis dato appear. und notice s given that copying s by permission of
the Association for Computing Machinery, To wopy utherwise, or to
republsh, repuses o Lee amd, or specitic perinsssn.

543

Comrnrnicaltons of the ACM

- g
+

a

2

4

Transputer

‘T ransputers

design and use as a building block

Jacco de Leeuw Arjan de Mes

FWI University of Amsterdam.

October 1992

Ly v -, -
: . '
‘
- . Y :
! “ K ! : !
i : 4 - & Ilj
= 5N B : AR
;8 EE B E Y
¥ 4.8 28 BE B
: N NG HES
v E 1 i o .
' 4 ' w8
1] it
i .
} ey
1 ™%
b '
{ g
i 1 qrw
i : -1
4 .
Y
) : ; J
, o p - P PRLL

This TRAM contains a IMST800 transputer and 4Mb of DRAM. It is sold by Inmos as an 'off-the-shelf’
component for use as a building block.

— by s

Transputers

1. Introduction

The first idea for the transputer stems from 1975, when lan Barron had the idea that it should be possible
to build a processor on a single chip which could be used as a building block for larger parallel
computers, or even supercomputers. Along with this processor, a high level language had to be provided
to use all of its possibilities.

In 1984 the technology had advanced far enough for the first transputer to be built. It became possible 1o
place a processor with memory (not much) and communication facilities on a single chip. The first
transputer was built by the firm Inmos and was for testing purposes only. In 1985 the first commercial
transputer was made by the same firm. This was the T414a.

The T414a became successful when Inmos produced an adapter for the IBM's Personal Computer and
released the language OCCAM 1, to program the transputer. Unfortunately, there were a number of flaws
to the T414a and OQCCAM 1. The T414a did not have a floating peint unit and OCCAM 1 provided no
alternative. OCCAM 1 did not support functions, nor the possibility to send more than one variable
through a communication channel. ‘

The T414b and OCCAM 2 solved most of those problems. The transputer was ready for serious
applications, such as real-time systems and as a building block for supercomputers. During that same
period inmos built a smaller and cheaper variation of the T414, the T212.

The T800, which was introduced in 1987, was the first transputer with a coprocessor. This coprocessor
could be placed on-chip due to new advances in the VLSI technology. The latest news [15NETN92]
suggests Inmos is planning to release a new transputer with an on-chip router, the T9000. It is said to be
10 times faster than the T800. it is however feared by experts, that the speed of the T9000 will be
outperformed by its (non-transputer) competitors before its official release.

Wa will not discuss OCCAM in our paper, this has been done many times before and we do not consider
it essential to our statement.

As VLS| technology progresses, the requirements for computer systems keep increasing. These
requirements increase so fast, the VLSI technology can't keep the pace. To meet these new demands,
the Von Neumann architecture has become insutiicient. Therefore research in this field concentrates on
other architectures.
Decisions have to be made concerning the grain size (i.e. what is the smallest unit that can be executed
in parallel). The transputer uses fine grain parallelism’ internally (distribution of instructions), but when
communicating with other transputers, it uses 'medium grain parallelism’ {distribution of procedures). It is
hard to classify the transputer into one particular class as defined by Flynn [01FLYNGE6] (i.e. SIMD, MIMD
_etc.). This depends on the environment in which the transputer is used. It can be used stand-alone
(SISD) or in a wavefront approach {SPrMD: Single Program Multiple Data), etc. Although the transputer
has a reduced instruction set, it can not be considered as a RISC processor; it has a microprogram.

(1]

TS LI AT - ey FEIE S D Y S - o e = il e

"t
iy eumeme a e

2. Transputer Internal Architecture

Transputers

Every transputer has the same basic architecture. The internal bus connects the processor to local
memory and 1o an external memory interlace. The communication links are connected to the bus via an
interface. This makes it possible for the processor to work independent of the links. Depending on the
type of transputer, the floating point unit is also connected 1o this bus.

Inmos T800 block diagram .
Floating Point Unit
/
b
S?ystlem (- P32 bit
"Services CED rocessor
Link
Timers Services
Link
:ZD Interface
4K b?des Link
o
Ogﬂ}ip CED :‘IED Interface
Link
:ED Interface
Link
External [:] Interface
Memory CED
Interface -
Event

figure 1 : Layout T800

"
%F

The system services take care of functions as reset, booting from ROM and hardware interfacing with a

host computer (although the actual communication is done through the links). it also helps in analyzing

run-lime errors. The transputer has four communication links, this makes it possible for the transputer to

communicate with other transputers and computers. Inmos supplies several interface chips and add-on

boards for other protocois, such as RS-232, SCSi and Micro-computer busses.

The On-chip RAM, which is also connected directly to the bus, provides 2 to 5 times higher access
speeds, than the External Memory Interface. For the 30 MHz version of the T800, the speed of the

MR T o Wt

(2}

’ LE-
&
-y B By

L e e

Wb
a b

-t A

Transputers

External Memory Interface is 40 Mb per second, while the internal bus uses speedé up to 120 Mb per
second. As all memory access is word-size only and the transputers which we are discussing are ali 32
bits, the respective access times for external and internal memory are 100ps and 33 ps.

address
#7FFF FFFF «
ROM
memory
configuration

#7FFF FF6C <
external
memory

#0000 0000 +{-—~——=——————~—————————

#8000 0800 <
4 Kbyte on-chip
#8000 0048 <
processor internal
#8000 0000 < . -

figure 2 : TBOO memory map

(3]

PR

L]l

Transputers

3. Instruction Set

THe transputer has 6 registers, each 32 bits wide. Three of these registers form a small but fast stack,
registers A, B and C. The olher three registers have explicit purposes. The O-register (Operand Register)
contains the operand to the current instruction. The I-register (Instruction Register) contains a pointer to
the next instruction. The W-register (Workspace Register} is a pointer 1o the program's workspace; all
memory addresses are relative to the W-register.

register A
register B a stack
register C
Workspace pointer W - register
Instruction polinter | - register
Operand O - register
| |

! .
31 23 15 7 0
figure 3 : The 6 reqisters . -

The transputer uses a fairly conventional RISC-like instruction set, to which special instructions are added
to facilitate teatures such as process scheduling and inter-process comimunication. This does not mean
we can call the transputer a Reduced Instruction Set Computer (RISC). Using [16COli9x] we can
compare tha transputer with RISC design issues.

To start with, the transputer is microcoded. That means, every time the transputer executes an
instruction, a small sequential program (*microcode”) is interpreted which performs this instruction’s
function. RISC processors use hardwired control, which means that instructions are "executed” directly
using hardware circuitry. This reduces the amount of needed processor cycles per instruction, as no
microcoded sequential program is run. Hardwired control uses more circuitry on-chip in comparison with
micro-programming. This could be a reason why no hardwired control is used in the transputer; the
designers had to make the most out of the available chip space. Of course, the result of the microcoded
scheme is thal more time is spent on the decoding of the instructions.

An important advantage of a microcoded processor is that upward compatibility can be realized in the
microprogram. This can be done "ad absurdum® such as in the Intel 80x86 processors, but
microprograms take increasingly more chip-space and become much more complex as functions are
added. The designers of the transputer used another scheme to accomplish upward compatibility, as we
will see later on.

For each instruction in the transputer's instruction set 1 byte is reserved, of which the 4 most significant
bits represent the function code and the 4 least significant bits represent a dala value.

Function Data
7 43 0

figure 4 : Instruction format

[4]

-y

Transputers

This fixed instruction format speeds up decoding. This is a typlcal RISC tralt. The reader could argue that
- this results in only 16 possible instructions with each 16 possible values as an operand. Strictly speaking
this is true, but of the 16 possible instructions, there are two which are used to extend the operand, PFIX
and NFIX. This is where the operand register (O-register) comes in.

When a one-byte instruction is executed, its 4-bit operand is placed in the leas! significant 4 bils of this
operand register. But before thal, the existing contents in the operand registers are shifted 4 bits to the
left, freeing a 4 bit space. Normally, instructions clear the operand register after they have executed. The
mentioned PFIX and NFIX instructions do not clear this register. In fact, PFIX (PreFiX) does nothing but
shifting its operand nibble into the operand register. Thus, by using a series of PFIX instructions,
operands can range from 4 bits up to the length of the operand register (in steps of 4 bits}). NFIX,
(Negative PreFIX), works the same as PFIX but also complements the contents of the operand register
after shifting it. This allows negative operands to be built up more quickly. Of course, just PFIX would be
sufficient, but (small) negative operands tend to occur as frequently as (small) positive operands, so an
extra instruction NFIX has'been added to the instruction set.

For illustration purposes: the assembly language instruction 1dc #1234 (which loads the constant
0x1234 into the register stack) is split into the following machine language instructions.

pfix #1 The previous instruction left the operand register blanked, so shift the
register 4 bits left and #1 into the register. Don't clear the register.
pfix #2 Shift the operand register four bits to the left and #2 into the register.

pfix 43 ditto
Now the value in the operand register has become 00000123. .

lde #4 Shift the operand register four bits to the left and #4 into the register, then
push the operand onto the A register. .

This coded into memory as #21 #22 #23 #44, where instruction PFIX is 2 and LDC is 4.

This scheme of building up operands has several beneficial points. For one thing, PFIX and NFIX
instructions are decoded and executed in the same way as all the other instructions. The decoding logic
does not have to bother with the decoding of the different operand sizes. This simplifies and thus speeds
up instruction decoding. Secondly, higher language compilers are simplified because every instruction
can take operands of any size. Thirdly, operands are represented in a form independent of the processor
word length. Transputers with a larger operand register will always be able to use executables of older
transputers with a smaller operand register. The scheme also has some less favorable points. Larger
operands are built 4 bits at a time. Every step 4 bits are “wasled" by the instruction field. A 32 bits
address for instance, takes 8 bytes instead of the usual 4 bytes. The time delay caused by having to
execute 8 instructions is somewhat lessened by the transputer's internal pipeline, as we will see later on.
A consequence of this scheme is that only 16 instructions have immediate operands, values directly
following the instruction. All other instructions have implicit operands, which means that these instructions
only work on registers. This makes the decoding of these instructions simpler as no other addressing
modes have to be taken into account. It is up to the user (or the compiler} to LOAD or STORE values to
or from the registers. This again is a RISC like phenomenon.

The transputer has only three data registers A, B and C, which form an evaluation stack. Three entries on
a stack hardly seem adequate, but local memory can be used when the register stack would overflow,
Surprisingly enough, the micro-code does not test for stack-overflow. So, when writing assembler, it is up
to the programmer to make sure slack overflow does not occur (unless it is intended) and that registers
are saved in memory when necessary. In higher level languages, such as OCCAM, the programmer does
not need to worry about the stack, as this is done aulomatically. These instructions refer to the slack
implicitly. For example, the add instruction pops the first two numbers off the stack and pushes their sum.
Inmos states: "Statistics gathered from a targe number of programs show that three registers provide an
effective balance between code compactness and implementation complexity.” [08INMO89). As

(5]

Transputers

[01FLYNG6] shows, even only a few regislers drastically reduces the processor-memory traffic, because
temporary results canbe held in the registers. According to Inmos {07HARP89], the number of such
temporary results can be minimized hy careful choice of the evaluation order. They even supply an
algorithm to perform the optimization of stack usage. A stack is used because it removes the need for
instructions to re-specify the location of their operands [07HARP89].

Until now we have only examined an instruction set of 16 one-byte instructions. This is a bit too modest.
Luckily, one of these instructions, OPR n{Operate), provides a way to extend the number of instructions.
OPR uses its operand as an opcode number, resulting in another 16 instructions which can be coded in
one-byte. COf course, these instructions cannot have any operands for themselves, they have to use
implicit operands (registers). Since the operand of the OPR instruclion may itself be extended by PFEX
and NFIX instructions, the instruction set of a transputer can be arbitrarily large. Depending on the size of
the O-register, which will be N bits wide for the example, there are 32 + 2" possible instructions, As itis
unlikely that this number will ever be reached when using 32 bits registers, term ‘arbitrarily large’ is used
by INMOS.

This does not mean that many instruclions will be heeded. The T414 for instance has around one

_ hundred instructions, whereas the T800 has some additional instructions (due to its FPU and some.
graphics instructions). Using this scheme, new transputers can have extended instruction sets while
retaining binary compatibility with older models. The disadvantages of a microprogrammed processor as
mentioned in [16COII9x] do not apply fully to the transputer, when new instructions are added.

While micro-programs do become longer and mere complex in new transputers, this is not because of the
problems to maintain compatibility [16C0OI19x]. As we have seen, with the transputer's expandable
instruction set, compatibility is in fact easily retained. The transputer's micro-program becomes longer;
only because of the added functionality. '

The most used instructions of the transputer's CPU are assigned to the 32 available one-byte opcodes.
Many of these instructions require one or two processor cycles. Again this is a typical RISC-trait. Inmos’
measurements show thal 70% of the instructions in programs are encoded using these one-byte 4
instructions [07HARP89] which keeps the sizes of execulables small. These one-byte instructions include
simple ones such as “load constant”, “add constant”, "store”, and "jump”. Most of these instructions use
just one processor cycle. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links of displays used in the
implementation of high level programming languages such as OCCAM, C, FORTRAN, Pascal or ADA.

Features which are common in RISC processors can be found in the transputer's CPU tco. Functions for
which CISC processors have special instructions must be built up from simpler instructions which are
executed in less time due lo less decoding overhead. in other words; the run-time complexity is moved to
compile-time. As a result, the transputer does not have, for instance, an extensive range of comparison
and conditional jump instructions. In fact, only EQC n {equals constant) and GT (greater than) are
available. All other types of arithmetical comparison must be evaluated by using these two instructions
together with the available logical and bilwise instructions.

Although elegant, this scheme for an open-ended instruction set has one small rigidity. The 32 one-byte
opcodes are already occupied, which means that they are not available for new instructions in future
transputers without loosing downward compatibility. New instructions will always use more than one
processor cycle. Using one PFIX or NFIX instruction before an OPR instruction makes the instruction
numbers -256 to 255 available, so one extra cycle is needed to make (512~ 16 =) 496 extra instructions
available. :

Extemnal memory lakes longer time to access than the on-chip memory. To minimize the memory access
time, the transputer has some special features. To start with, when data is to be written to external
memoty, this data is stored in the output buffers of the on-chip memory interface [17RTSI9x]. The CPU

(6}

K
S
B

e

Transputers

does not have to wait until the write process has finished, it can proceed with the next instruction. Only
when the CPU wants to access this memory location, it is forced to wait. Even then it is not idle because
other processes can have their time-slices.

Another facility of the transputer is the buill-in user transparent pipeline. As memory access is word-size
only, several instructions can be fetched in one cycle. The transpuler has a one-word prefetch bufter,
which makes the instruction fetch pipeline two words long. As we have seen, due to efficient encoding,
instructions are just one byte long, which means thal in a 32-bit transputer (such as the T414 and T800)
the pipeline can hold 8 instructions at a time. When the program to be executed is stored in internal
memory, the transputer rarely has to wait for an instruction to be fetched. This speeds up execution.

The pipeline scheme used in the transputer is fairly simple compared to other processors. There are no
technigues used to reduce the "branch penalty” {instructions that are unnecessarily fetched when the
CPU jumps to anather location). Since the prefetch buffer is only one word long, the "branch penaity" is
quite small. Only when a branch is taken, one memory cycle is wasted (note: It costs two cycles to fill the
pipeline with two words. The first word contains the branch instruction. So, that memory cycle is not
useless, but the second memory cycle is, because the instructions in that word are not executed due lo
the branchy.

Another reason why the transputer is microcoded is, it was a design choice 1o make the compilation of
OCCAM program as easy as possible. In order to do this, functions were moved from the programming
language to the processor. This is easier to do when a microcoded processor is used instead of a
hardwired processor. A further benelit is that (OCCAM) programs can be compiled to a very compact
form which gets the most out of the (limited) on-chip memory. Of course, when code has to be retrieved
from memory outside the transputer, there is a time penalty. The high instruction code density then helps
to reduce the amount of processor-memory traffic. (Note: the time penalty is the highest when code has
to be retrieved from the transputer links, which are serial. The transputer can address 4 Gb DRAM
directly using its memory interface, so that code does not always have to come over serial links.)

As an illustration of the fact that the instruction set has been strongly adjusted to OCCAM: There are
special instructions in the instruction set to implement the OCCAM PAR and ALT constructors. 11 extra
instructions were needed to implement AL T !

A side-effect of moving instructions from the programming language (OCCAM) to the processors
micro-code, is that it becomes nearly impossible for the OCCAM compiler to optimize code.

The transputer is usually programmed in a high-level language, of which OCCAM gives the best
performance. Programming in assembler is, according to INMOS [08INMO89] not necessary, but can be
used for a more efficient memory management scheme or communication with peripherals, for
manipulating internal scheduling and communications mechanisms or when recursion is needed.

(7]

Transputers

4. Formal Correctness

As we mentioned earlier, OCCAM and the transputers instruction set have been designed to be used
together. OCCAM is based on Hoares 'Communicating Sequential Processes’, CSP for short. Due to
mathematical nature of CSP, OCCAM has been proven correct (sound). It can be determined whether
two programs are semanlically equivalent, by using a set of transformations. When a FPU was added to
the transputer (ANSI/IEEE Standard 754 for Floating Point Arithmetic, 1985), INMOS had to reverttothe Z
specification language and ML (a functional language) to prove correctness [03HOMEBS7]. The proof was
then extended to prove the micro-code of the transputer. This last step was done by computer.

-
I
-

¥ e

(8]

e R A i, a3 b2 TN N e i . . ' . R o

s

Py

Transputers

5. Processes

Until now, we have only dealt with sequential instructions and everything seemed reasonably straight
forward. But the transputer's instruction set also contains several instructions concerned with the
execution of processes in parallel on the same transputer. In order to do this, the transputer will have to
be able to switch from the slate of one process to the slate of another. The information representing this
stale, commonly known as the process description, will have to be saved. Preferably to (on-chip) RAM,
becausse this switching has ta be done quickly (especially in a real-time environment). So, the transputer
supports fine grained parallelism, but in such a way that the programmer / compiler explicitly has to
indicate parts which can be executed in parallel. The transputer cannot detect parallelism by itself.

The transputer's implementation of concurrency is closely based on the concurrency model of OCCAM.
The transputer has special instructions (such as STARTP, STOPP, RUNP) to manipulate processes, and
it has a special microcoded scheduler. The latter is in contrast with the conventional way of implementing
a scheduler in a software, typically a special process in the operating system's kernel, which is triggered
by a (clock-) interrupt or a trap (software interrupt}. A scheduler in hardware has the usual firmware -
software pros and cons. With an on-chip scheduler, context switching can be very fast but on the other
hand the scheduling is not very flexible. For some applications it could be preferable to use another
scheduling algorithm; in a software scheduler this can be done quite easily.

A process on the transputer is described by several pieces of information, such as registers, workspace,
program and priority. Such a process does not have to be a sequential process but can also consist of
several subprocesses. '

Processes on the transputer can be separated in two categories:
* active (executable) processes
* inactive (suspended) processes.

An active process is a process which is being executed or which is waiting for its next turn to be
executed. An inactive process is a process which is waiting for interprocess communication or which is
suspended until a certain specified time. For keeping track of these processes the transputer maintains in
total 4 lists. The transputer has two priorities in which it can run - as we will discuss later on - and for both
priorities it has two lists for the above mentioned categories of processes. Of course, the active process
which is being executed at the moment does not have to be on the active process list because its
process information is loaded in the registers of the transputer's CPU. The transputer contains two
registers for each of the four lists.

Processes on the transputer can have two priorities: high or low. A high priority process which is
executing on the transputer will run until ¢ wants to stop. After that the next process on the high-priority
executable process list is executed. When there are no more high priority processes, low-priority
executable processes are allowed 1o run. Although there are only two levels of priority, this feature can be
used for several purposes. For instance, a high-priority process can deal with interrupts (from the
EventReq pin) so that when an interrupt occurs this event can be processed quickly. A user program
does not have to run in high-priority as a whole. Only the part which handles interrupts needs to be run in
high-priority mode.

The priorities of processes can be set by the assembly language programmer using a special instruction
(RUNP; [11MITCS0]). In OCCAM, pricrities are statically determined at compile-time by the programmer
using the PRI ALT and PRI PAR constructions.

(9]

Transputers

A process (low or high priority) will be descheduled when one of the following conditions occur:

* The process execules an Instruction in order to communicate with another process.

* The process executes the TIN (=Timer Input) instruction which causes it to wait until a specified
time. In the case of interprocess communication the process will then be put on the list of inactive
processes for that priority. Here the back-of-the-list pointer is used. One of the differences between
low- and high-priority processes is that tow-priority processes must share the CPU (pre-emptive
multitasking). So, when the process is a low-priority process, there is another condition under
which the process will be descheduled.

* The low-priority process has used up all its time-slice.

Low priority processes are subject to round-robin scheduling [19TANES87] with a time-slice period of
about 1 ms in a T800. But there is a limitation: descheduling due to the expiration of a time-slice can only
happen after the execution of certain instructions. These instructions are:

* an unconditional jump {J; jump)

* a spegcial instruction which is very often used in loops (LEND; Loop End)

* several others

As a result, a particular Iow-pnonty process which cleverly avoids these instructions can domlnate the
other low-priority processes'. On the other hand, the scheduler does not consume any CPU time for
processes which are descheduled, that is, for checking when it is another process turn [07HARP89, page
18]. ‘
According to INMOS, in some instructions (J, LEND and others} there is almost no information in the s
registers so that very few registers have to be saved in memory. Process swilching takes longer as there
are more registers to be saved to-memory.

When a high-priority process wants to run on the CPU (for instance, because of an interrupt) during the
execution of a low-priority process, Il is not desirable to wait for the low-priority process to execute a jump
or a loop end. In this case, all the process information - such as the evaluation stack - is saved in on-chlp
memory. %

A process running in high-priority can monopolize the CPU, as it cannot be descheduled. High priority
processes are expected to execute for short time intervals but what if they do not? Maybe the use of, for
instance, a monotonic rate algorithm {17RTSI9x] for scheduling high-priority process could be useful, but
then only for cases where there are more or less predictable deadlines. The bottom line is that
high-priority process must be very cautiously designed in order to insure that low priority processes do
proceed as well.

The transputer has two timers, one that gives a tick every microsecond and one that gives a tick every 64
microseconds (for the 20 MHz T414). This can be considered another inconvenience because the two
timers are associated with a leve! of priority. Low-priority processes cannot use the high-resolution timer.
This means it can happen that processes run needlessly in high-priority, all because of the fact they have
to use the high-resolution timer. A typical process switch takes about 1 microsecond (on a 20 MHz T414)
[17RTSI9x, H13, page 13}, with an upper limit of 4 microseconds. The exact duration of a process switch
depends on the priorities of the processes. Instructions which take variable clock cycles (such as the
MOVE (block copy) instruction of the T800 {11MITC30] are constructed so that they can be interrupted
for a process switch.

The number of processes allowed is only bounded by the amount of free (on-chip) memory available for
the processes and their workspaces [17RTSI9x, H13, page 13]. Each of the two lists with active
processes has a register which points to the front of the list, and a register which points to the back of the

! Avoiding thess instructions can be done quite easily. For instance, instead of the unconditional jump J, the
programmer can use a canditional jump with the condition fixed on FALSE. Thatis: LDL #0, CJ #xxxx.

[10]

Transputers

list. The latter makes it possible to add descheduled processes quickly at the back of a list, though it uses
up extra on-chip space and time during a context switch.

[11]

s e el

Transputers

6. Transputer Based Systems

We can identify three classes of hardware applications for transputers: in an accelerator board- in
embedded systems- in {relatively) stand-alone MIMD machines.

Add-on boards with transputers

Especially the early ransputgrs were used in accelerator board for conventional systems (e.g. IBM PC
and DEC VAX). Add-on cards with one or liitle more transputers offered a good price/performance ratio
for those who were willing to recode their applications into OCCAM. One example is INMOS' TDS,
Transputer Development System.

Some years after the transputer appeared on the market several processors were introduced that clearly
outperformed the transputer in raw cornputing power. {03HOMEB7] contains some results of floating-point
benchmarks. The transputer comes out best of the then available processor/coprocessor combinations,
according to this paper. But it must be stated that using the transputer as a floating point add-on
processor is only efficient when the nature of the tioating point problem is ‘coarse grain'. With this we
mean that the transputer has to do its work on its own, without too much communication with the host
system. Only then the data traffic to and from the host processor will be acceptably high. Do not forget
the transputer uses serial links {although high-speed).

Add-on boards are suitable for several applications. For instance, the real-time nature of the transputer
makes it possible to use it in a simulation system for logical components, VLS| simulation {07HARPSS,
page 221, 04MUNT88, Welch page 145]. -

INMOS also supplies TRAMS for its transputers. TRAMS are modules containing a transputer and some
other circuitry, such as extra RAM or a device conltroller. TRAMs are also equipped with an INMOS
standard interface which makes it possible to mount it onto a variety of motherboards with specific host
interface hardware. This way the same TRAMs can be used on different host systems.

Using this modular system has a great advantage: expandability. Users can expand their systems in time
as their need grows. As TRAMs contain RAMs as well as transputers, expanding the system means
increased processing power as well as more storage capacity so that these two factors remain in
balance. Transputer software emulators are also available, which means that the use of transputers can
be evaluated without purchasing extra hardware [04MUNTS88, page 281}. These emulators can
futhermore be used 1o separate the software development system from the production system.

Transputer based embedded systems

An important application for a device as the transputer is an embedded system. And that is not only from
the manufacturer's point of view, so higher volumes of these devices are sold. They can also be applied
in devices such as laser printers, hard and floppy disk controllers and are often used in scientific projects.
In fact, INMOS even supplies special transputers as disk controllers. Again the real-time aspects of the
transputer make this possible, in addition to the communication facilities. Other examples of the use in
embedded systems are: graphical applications such as simutators and laser printer controllers (the latest
transputers contain several instructions such as Draw2D and Clip2D for graphics applications);
space-borne devices [07HARP89]; robot control and sensor data processing.

A common use of the transputer add-on boards mentioned above is as a development platform for
embedded systems. Software for the embedded system can be edited, run and debugged from the
transputer board. In the production phase of the embedded system, the ROMs or EPROMs from which
the transputers will boot can be downloaded from a link.

(12]

O R L e i il PR
-

Transputers

MIMD transputer machines
When transputers are used as MIMD machines, a ot of the problems common to MIMD appear:

Topology

In 2 multi-processor system, processors need to communicate with each other. This is dependent on the
topology: the way in which the processors are connected with each other. In fixed-communication
systems a processor can only communicate directly with its neighbours while in general-communication
systems each processor can communicate with any other processor. The advantage of a fixed-topology
machine is simplicity. Processors are connected in a regular pattern. In some cases fixed-topology
machines fit very well for a particular application, for instance a two-dimensional grid for image
processing. General communication networks are easier to program for a wider range of applications,
especially those who do have irregular or dynamic changing patterns of communication.

When choosing a lopology several considerations can be made. These include:
¢ Diameter. This is the maximum number of "hops" a message has to travel from one processor to
another. If the diameter is small, communication is likely to be quicker.
* Extendibility, so that a network of processors can be built of {preferably) any size.
¢ Redundant paths, so that in case of failures messages can be routed via a detour. Redundancy will

also distribute communication over several paths which prevents "hot spots” (bottlenecks).

Of course, topology does not determine overall performance. Much depends on the actual problem,
whether communication can be dealt with locally (thal is on-chip or wilth neighbouring processors at
most).

Some of the most used topologies for transputer systems are:

* Crossbar networks, in which every processor is‘connected to any other processor INMGS
supplies a circuit-switching chip, the C104 so that crossbar networks for transputers can be easily
implemented. The Meiko has this kind of swilch.

¢ Mesh networks, such as grids and toruses. These networks often malch specific (two-dimensional
space related) applications very well.

* Trees.

¢ N-hypercubes and other networks whose diameters size logarithmically with the number of
processors. Each pracessor is connected in a n-cube manner with n other processors.

The transputer contains four links. This imposes restrictions on tha topology of transputer networks. For

instance, only hypercubes of degree four (16 processors in total) can be constructed. Performance
depends on the interaction between the lopology and the parallel programming paradigm used. Several
are presented in transputer related literature:

¢ Algorithmic parallelism. The application is split in functional units. For sumple cases, they can form
a pipeline. Stages can perform in parallet, while communication is buffered so that the processor
does not have to wait for I/O. The slowest stage limits the maximum performance.

* Geometric parallelism. Many (physical) applications have an underlying reguiar pattern with limited
spatially interactions. A processor can be assigned to each spatial area, while communication is
often 1o local neighbours only. This paradigm requires only a fraction of the total data on each
processor though often the whole program must be resident as well.

¢ Processor farms. Sometimes applications can be divided in small, similar pieces. These jobs can
be done without knowledge of previous calculations. A 'server' distributes (‘farms out’) the pieces
over several ‘slaves' when they finish their previous jobs. Each slave receives a workpacket which
can contain a large set of data. Extra slorage facilities may be required though less communication
between processors is involved during calculating.

(13]

e

Transputers

+ Hybrid forms.

Mapping

Processes will have to be distributed over the whole system. Especially in large systems this can be hard
for the programmer to do manually. Care has to be taken of load-balancing as well. A system is said to
be loadbalanced when none of its processors force others to stay in an idls time for long. It would be nice
to have a configuration tool which decides where processes and communication channels will have to be
placed. Unfortunately, this problem was proven to be NP hard [04MUNTB88, page 187] so that an efficient
solution for all cases is not eminent. Several considerations will have to be made such as choosing
between static mapping, dynamic mapping or new propositions such as post-game analysis. Tools based
on heuristic algorithms have also been devised [04MUNT88, page 188].

Routing

When a transputer wants to communicate with another processor which is not its direct neighbour, it is
clear that some kind of routing scheme is needed. Rouling can be done statically or dynamically. Several
algorithms have been devised in arder to explore an in advance unknown network of processors
[04MUNT88, page 188, worm program] [07HARP89, page 181]. Such an algorithm musl be:

* complete (so all messages arrive)

¢ deadlock free

+ optimal {(packets take the shortest route) .

¢ scalable (so that it can be used for networks of any size) ati
Message passing is typically implemented by some sort of “post-office”-like mechanism by which a
message is forwarded to its destination. Other algerithms are based on multiplexing channels, i.e.
implementing virtual channels. Virtual communication paths require duplicate queues and a complex
protocol. Points of attention in packei-switching networks are deadlocks. Deadiocks occur when a routing
algorithm is not properly designed and packels can no longer advance due to full buffers. {18GUNT81}
gives an introduction in the prevention of deadlocks. When arbitrary communication between processors
" is needed for an application, the user has lo implement his own message passing algorithm. This ¥
functionality is in fact often needed; to quote [12BOARS0, page 9]: "We suspect that store-and-forward
functionality is so universally useful that it should be provided as an atomic transputer capability”.

f14]

At il A Armi ke ke v w - = [P SR

Transputers

7. Operating systems

The need for an Operating System

Does a transputer based system need an cperating system? Of course, this depends on what the
transputer is intended 1o be used for. One of the most important reasons to use an operating system is to
"virtualize® the system's resources, such as /O, memory, CPU, so that different programs can share
these resources. In a mulli-user environment the operating system also has to provide some means of
protection between users. Virtualization also improves the portability of software. Another advantage of
virtualization is that, with fuck, application programmers do not have to bother with low-level hardware
specific matters; the operating system supplies the programmer with an easier to use development
system. On a multi-tasking system, the operating system normally has to keep track of all the processes
which are running, suspended, wailing, elc. But an operating system is not always needed. An important
application field for transputers are embedded systems. In embedded systems, the given situation
(hardware, software) is not very likely to change. Programs interact directly with the given hardware;
system software to keep up with these changes is not needed. [n addition, when there is no extra layer of
system software, there is no assoclated overhead in memory space and execution speed as well. So, in
the case of embedded systems, an operating system is just convenient for the programmer.

In the Transputer Development System (TDS) a lot of operating system functionality is handled by the
host system, For instance, when a transputer wanis to perform some 1O it has to communicate with a -
transputer connected to the host system. In such a case, a fully functioning transputer operating system
is not used, but each processor must at least contain some kind of communication kernel in order to pass
messages around to the host's operating system.

In many cases, a full-blown operating system is nol needed but some of its functionality is. For some
applications,-such-as-the-Fast-Fourier-Transform-(FET),-the.use.of . Unix for.instance, .resuits.in a.lot.of

unnecessary administrative overhead. It is imaginable that in a multi-transputer system, some transputers

run the full operating system because they provide the interface with the user(s}, while other transputers

only run a real-time kernel for time-critical applications and the rest of the processors run a kernel of a
small subset of Unix-like calls for doing a FFT.

An Operating System on a MIMD System

In other cases, a native transputer operating system comes in handy. But there are problems. Most
axisting operating systems are essentially meant for uni-processor systems. In such an operating system
all decisions are taken in a centralized way, by one processor. It is not likely that such a schemse is very
efficient and fault-tolerant when it is directly adapted to a multiprocessor system. Without rewriting major
parts of such a operating system they are very difficult to port to a multi-processor environment. Even
when an operating system is able to manage mutti-tasking, this does not guarantee its portability to a
MIMD system. These problems are caused by a number of reasons. First of all, the topology of a MIMD
system does not necessarily have be known to the operating system in advance. Ideally, the operating
system has to take care of that, so that the user/programmer is not bothered by such a task. Secondly, it
is nice to have the operating system handle topology changes, such as when extra processors are added
or when malfunctioning processors are stut down. When the owner of a system buys new processors,
old software should be able to run as normal, with a scaled up performance. Also, all different kinds of
hardware have to be supported by the operating system. For instance, earlier in this document we have
seen a range of different transputers available. The transputer's design covers up a lot of differences
between the several types of transputers, but the operating system still needs some information about the
particular nodes in a system in order to distribute tasks, etc.

(15]

Transputers

The operating system should be able to take care of ali above mentioned points. Otherwise, chances are
that very few applications are going to be available for such a system. What good is "shrink-wrapped”
software which does only run on one specific system with 42 T414's in a 2D grid network?

An Operating System on a Transputer System
There are special considerations a transputer operating system should make because of the very nature

" of the transputer. The transputer contains an instruction set which is unusual in the way that it supports

different functions more commonly handled by the operating system. The notion of "processes" is directly
available at machine language level. This means that processes can be dealt with in a very efficient way.
On the other hand it is arguable whether this kind of light-weight processes correspond the process
model in a modern operating system. But there is no reason why a transputer operating system should
not exploit the availability of these processes, albeit perhaps with some extensions. A real operating
system type process will probably need a wider range of priorities, as opposed to the native "high/low”
transputer processes.

Also, the transputer's built-in communicalion mechanism is an extra which the operating system has to
take into account. The OS can use it for its own purpose (internal queues, for instance) but also it can
increase the reliability of the system by prohibiting the direct use of the /0O mechanism by application
programs.

While the above mentioned features can be quite useful, the transputer lacks some serious features
commonly found in processors which are considered essential for a modern operating system. For
slarters, the transputer does not have a memory management unit (MMU) {19TANES87]. A MMU is¥
convenient for a number of reasons. it aides in the implementation of virtual memory. Pages of RAM,
connected to inactive processes, can be swapped to disk. In the transputer, without its MMU, when a -

program needs a large address space, it will have to use real memory. Such a transputer will have to be Y

supplied with a large quantity of DRAM via its external memory interface.

A very important application of a MMU is the possibility of a private memory address space for each™
process. A “flat" address space is convenient for the programmer. Furthermore, a MMU provides &
protection between processes so thal a user's process cannot read or write in the address space *
associated with another process. This is particularly dangerous when the address space of a system
process is concerned. A MMU can be exiended in order to make the sharing of code areas possible, so
that the same program can run with different data using the same code, saving precious (on-chip)
memoary. In theory, the tasks of a MMU can be emulated by software bul this will result in a severe
performance loss.

So, why is there no MMU? It seems that the lack of a MMU on the transputer makes it unsuitable for
(high) security systems. There is a technical reason: instructions are not restartable, in case of an
occurring page-fault in the MMU. But according to [07HARP89, page 88] there is also a design decision
behind it. The transputer is intended to be used with other transputers, each with its own memory space.
The original transputer design envisaged each process running on ils own processor. Then, protection
between processes is the physical separation between procassors. Communication is done by strict,
controllable means: links. An advantage of such a scheme is that it is more reliable in terms of protection
between processes. Badly written or malicious processas cannot touch the address space of other
processes, using errors in the operating system or else. On the other hand, one process per processor Is
highly expensive and not realistic.

The transputer also lacks a privileged execution state. Such a state is mostly used to distinguish between

system processes and user processes. A process in privileged execution state is entitled to access
strategic system resources. Without it, virtualization of these system resources (and lhus protection) is

[16]

Transputers

more difficuit. The priority scheme in the transputer is insufficient. Although it is true that some machine
languaga instructions can only be executed in high-priority, a user process can easily obtain high-priority.

Several Operating Systems in more detail

All the above show that it is difficuit to port an existing operating system to a MIMD environment, let alone
a transputer system. In the remaining pat of this chapter we will discuss some (commercially) available
operaling systems for the transputer, in which we will address the problems associated with it in some
more detail.

Express

[07HARPS8Y, page 86]

Express is based on some of the early development work in parallel computing which took place at the
California Institute of Technology. It consists of a message-passing kernel and a set of library calls which
provide the interface in order to create a parallel programming environment. /O can be done to the
console through a network of processors without knowing the topology in advance.

Unix

[07HARPB89, page 88,89)

The lack of a memory management unit has seriously hampered the development of a Unix version for
the transputer. There is in fact one pon, |dris, which is a derivative of the older Unix V7 which does not
explicitly require a MMU. The syslem provides a POSIX compatible set of calls. The Idris implementation
for the transputer runs in one processor - which makes it quite vulnerable in our opinion - while other .
processors are equipped with a communication kernel through which it is possible to start up other
processes.

Trollius

[07HARPS89, page 90] i

Trollius is a message passing operating system for parallel architecture comptters, where the computer
can be a transputer-based node or a conventional Unix-machine. Several transputer based machines are
supported, such as Meiko and Parsytec. Trollius consists of a kernel for the transputer based machines
and provides a set of library calls for it.

Meiko

Meiko supplies a transputer based system with the name "Computing Surface”. A Computing Surface
can be shared by different users at the same time through "Meiko Multiple Virtual Computing Surfaces®
(M2VCS). It provides a way of dividing a single Computing Surface into several virtual Computing
Surfaces. Each of these virtual machines is made up of a "domain” of processors. A domain consists of

[17]

Transputers

building blocks known as "elements”, see figure 5.

Element
Memory specific
] function
L | 4 E
N4 ' <
Processor Supervisor
interface
Network Supervisor
. interface bus

figure 5 ; General diagram of an element

Examples of such elements are: compute elements, periphery elements (interfaces to other systems},
mass store elements and display elements. The transputer links in a Computing Surface can be -,
configured dynamically. This is done by a cross-bar switch, so that different topologies can be tried out by
the user for his application. A cross-bar switch can be compared with a electronic telephone exchange
station. The domains are connected by a central “spine" of dedicated transputers and system software
called the Computing Surface Network (CSN}. The spine can be any nen-cyclical shape, such as a tree

or double spine.
E Domain < E Domain q E Domain <

glgghhlc ﬁ H \{[. DI:
ith e iy s
:ling }‘ ‘ i —D:
sYslem >

L i Lo
E Domain @ 2 Domain g E Domain C

figure 6 ; An example M?VCS configuration.

M?VCS provides protection between domains so that user processes in one domain cannot corrupt the
rest of the Computing Surface. This is relatively easy to do because domains are already physically
separated. This is exactly following the design which is the cause of not having a MMU on the transputer.

The CSN works on a client/server basis. That means a system resource is connected to the network by
a server process associated with it, and users wishing to access this resource can do so by sending
messages through a client process which communicates with the server. If many clients want to access a
single server, this may cause some throughput problems as the CSN itself is a shared resource. This can
be compared with clients cailing the same telephone number. If the network becomes saturated (that is,
messages lake a very long time 1o arrive at the server) it may be needed to redesign the spine which
forms the communication network of M?VCS. For example, when a file server is used by a lot of clients, it
may be advisable o build a tree network with the server at its root. In that case the network bandwidth is
more balanced than with a pipeline topology. '

{18i

-{'EV

I

o

-~

Transputers

Every terminal connected to the system is associated with a login shell through the CSN. The user hasto ,
supply a password 10 the shell which is validated by a password server, After a successful login the user
can interact with the shell by typing commands. At that moment the user is connected to a particular
processor within a domain. This processor is called the "user seat”. Onto this user seat the user can
download an operating system and start running programs. Several operating systems are allowed fora .
_user seat: Meikos (Meiko's own Unix-lookalike single user operating system), OPS (Occam Programming
System) or Helios. These separate operating systems may share system resources. For instance, the
files supplied by a file server are accessible by all operating systems while the file server handles the file
protection. The CSN handles the transiation of the local system’s cails into the remote resource's calis
transparenily.

Once a user has obtained a user seal he ¢an start developing or running programs on the other
processors within the domain, without the risk of corrupting the work of any other user working in parallel
with him. This is more or less something like a network of conventional computers using a conventional
operating system, while it is also possible 1o use parallel programs directly.

Helios

[04MUNT88, page 41} [20SCHAS0] [07HARP89, page 91]

Helios is a distributed operating system for transputer systems. It is influenced by the Cambridge
Distributed System and Amoeba and it is similar to Unix at user level. In a distributed operating system
there are no vulnerable central services upon which the whole system relies and which can become a
bottleneck. in Helios this distributed nature is transparent to the user as well as to programs running -
within it. They do not need to be aware of the exact location of services. Helios' main goal is to make the
different network topologies and number of processors as transparent as possible so that software (even
binary object code) can be used in different environments. .

Communication between processes is done by message passing. This is achieved through message
ports, logical point-to-point connections. The physical links of the transputer can not be used directly by
the user because of the danger of corrupting the system, but are managed by Heiios. The semantics of
message passing on the transputer are the same regardless whether the destination process is in the
same processor or another. The routing mechanism for the message passing is built when Helios first
attempts to locate a service. This is achieved through a "distributed search* algorithm which locates the
processor on which the server resides. Instead of processes - which are handled efficiently by the
microcode - Helios manipulates fasks. A task is a program in the state of execution, consisting of one or
more processes. Data such as open files and memory are associated with a task rather than with
processes.

Helios uses the client-server model as a concept (compare with Meiko). All servers are state-less which
means that in case of a failure of the server no information about its state is lost. And in case of a
network failure the message can be repeated without harm. This also means that messages from the
client will, for instance in the case of a file server, have to contain file identification data and the position
in the file. Multiple servers can coexist. When a message is sent, it is duplicated in the network and the
quickest server responds.

All system servers are accessible using the General Server Protocol (GSP). Network resources such as
processors, files, devices are all considered as objects. They are identified by a unique name and are
orderad in the same way as a hierarchical file system (such as Unix}. There Is no central name server as
this would surely become a bottleneck. Instead, each processor contains its own name table and when
an object is naeded that is not present on the processor itself, a global search will be done. All objects
can be accessed in the same orthogonal manner. That means, for instance, not only files can be listed
and removed using the commands “Is" and “rm" respectively, but also tasks. Objects in Helios - which
after all is a multi-user system - ara protected by capabilities {21 TANES86). A capability can be compared

(18]

P

Transputers

with an entry ticketl you have to show every lime to the porter. Capabilities hold access rights to an
object, and they ars encoded by cryptographic means. When an object is created, a capability is created
as well. Every time a client wishes to access this object it has to show its capability to the server. The
server then can decode the capability and verify the client's access rights to the object. Capabilities for
file systems are long lived and can be stored in files, directories or user programs. Once a user has
identified himself to the system by the usual way (logging in), he obtains a capability for his home
directory which contains capabiiities for all the other objects he has access to. There is no super-user
(hoi-hoit), alt privileges will have to be obtained by having capabilities with more access rights than
others.

The Nucleus is the minimum system that must be present on every processor running Helios. lls purpose
is to control the resources of a single processor and to inlegrate it in the whole Helios system. It is written
in assembler in order to make it as small and efficient as possible. The Nucleus consists of four parts: the
Kernel, the System Library, the Loader and the Processor Manager. The Kernel implements the message
passing mechanism as already described and also manages the hardware resources of the processor,
For instance, it controls the allocation of on-chip RAM and external RAM. It does not do process
management as this is done on a lower level, as already stated. Also it does not provide protection
between address spaces due to the lack of a MMU on the transputer. The System Library provides the
equivalent of system calls of a conventlional operating system. lts main task is to implement the "General
Server Protocol” through which all Helios servers can be accessed. In addition, there is another set of
calls which implement a Unix-like duplicate. These calls follow the POSIX standard to a large extend, but
are in general not as efficient as the "native" set of calls. The loader has the task to load program code
and data (such as bitmaps and fonts) to memory. It also unloads them as they are no longer needed. The
Processor Manager creates Tasks, manages them while they are running and removes them when-they
terminate. This is done through the means of an 1O controller, a special process associated to each Task
which supplies the interface between the Task and the rest of the system. Run-time failures and
exceptions are also handled by the Process Manager {20SCHA90].

[20]

Transputers

8. A large case study,'

IBM's Victor V256 and some of its applications
(13SHEA91}

In this section we discuss the 1BM Victor V256 partitionable multiprocessor. It is a message passing
system with 256 Inmos T800 transputers. Ali the memory is distributed; this was considered essential for
significant speedups. IBM chose to use transputers because of its specialized on-chip
interprocessor-communication support.

Experience
A lot of work is done in the field of parallel processing. In designing the V256 experience was gained by
studying the following project:

¢ Cosmic Cube, a 64 node machine based on the Intel 8086, made by the California Institute of
Technology, a pioneer in this lield.

¢ Armstrong, a 100 node machine based on the Motorola 68010, made by the Laboratory for
Engineering and MarvMachine Systems al Brown University. Here reconfiguring the network has to
be done manually using "patch-cords", this, however, can be done while the system is running.
This also increases the fault-tolerance. The network layout is completely masked by the operating

~ system. Also 32081 coprocessors have to be used for floating-point operations.

¢ Hathi-2, a 100 node machine based on the Inmos transputer, made by the Department of
Computer Science at Abo Akademi in Finland. Each of the nodes has 256Kb of memory and the
network configuration is set with manual switches on the backplane. Yet reconfiguring the network
does require a reboot. The granularity for this system is 4 transputers, whereas the V256
transputers can be partitioned per processor.

¢ Esprit P1085, a 17 node machine based on the nmos transputer. 16 of the nodes have 256Kb
memory and a 17th transputer has 16Mb memory, this is used for storing and distributing data.
The reconfiguration hardware allows any network setup that can be created with nodes having four
links. The system provides more reconfiguration capability in hardware than Victor but lacks the
hardware monitoring facilities. .

* V32 and V64, IBM built smailer models of this machine, this gave them insight into working with
transputer in this type of system. Many of the examples that will be mentioned were also tested on
these machines.

The Victor system ,

The Victor system has four types of nodes (processor, disk, hostand graphics), all using the T800
transputer, The processor nodes of the V256 form a 16x16 mesh. The host nodes are connected to the
corners of the mesh, thus allowing four users on the multi-user system. A fifth host node is connected for
the super-user.)
The processor nodes are built up of one Inmos T800 running at 20MHz, 4Mb RAM and some partitioning
and monitoring hardware. ’

The I/O speed of the system is not ideal. According to Langdon [22LANG82] the I/O capability of this
system should be 100 MB/s, the V256 only reaches a discouraging 5 MB/s. This has nothing to do with
transfer speed of the transputers, the bottleneck is the transfer rate of the 16 harddisks. The harddisks
can be accessed in parallel and have a transfer rate of 310 KB/s. Each of the harddisks is connected via
a SCSI bus to separate T800 which in turn connects to the 256 transputer mesh.

[21]

Transputers

The partitioning of the mesh into four segments is controlled by the host-nodes. These nodes resarve
“as many as needed" transputers for the client. A segment is usually rectangular. That ts not essentiat but
there must be a path from every node in the parition to the host. A partition size can range from 1 to 256
transputers.

The logic for the V256 is packaged on circuit cards. The cards are sfightly modified off-the-shelf and
contain 4 nodes. They alt use the same oscillator, which is phase shifted before it drives each node. This
phase shift is very interesting: Each card has 4 transputers and 16 megabytes of DRAM. The phase shift
causes the hardware !o refresh the DRAM at different points in the cycle, thus reducing peak current
demand. An error correction code is added when each 32 bit word is stored into memory; it is a 32/39
ECC, which also provides double-bit detection of memory errors. These last two features and many more
increase the system reliability. There have been few memory failures and only one link failure. The
system dissipates 20 kW and is air cooled.

System software
Three message-passing environments have been tested on the V256. 1BM does not mention which of

these is preferred.

¢ Communicating sequential processes. This uses functions native to the transputer. These are
based on the CSP paradigm introduced by Hoare. As many of the required features of the
message passing environment were already implemented in hardware, IBM tried to use Occam as
a base for all communications. .

¢ E-kernel. The "embedding kernel" was intended to relieve the user of the concern of optimizing
program communication for the system network topology. E-kernel is used both to optimize the
performance of an application running on a Victor partition and to experiment with program -
performance for systems with different network topologies. The embedding is done in two phases.
The first phase is program mapping, it maps the applications task graph onto the system network
topology. The number of nodes in the task graph is assumed to be equal to number of pracessor
nodes needed. The second phase is petwork reconfiguration. The E-kemel embeds the chosen
network topology onto the 2D mesh of a partition on Victor. IBM does not mention how this is done
in detail, but we assume there is some routing hardware on each node, as the T800 has no on-chip
support for routing. The E-kernel was writlen in Occam. '

¢ Express. This system is based on work done for the hypercube. Fox et al [23FOX88] have
developed an environment called CrOS ill (hypercube crystalline operating systems). In this
system communication is grouped into “conceptual units”. This has two reasons; the first is that it
is easier for a programmer to think about communication and concurrency in terms of these units,
second is that these units can be implemented very efficiently on the machine.

Applications

The following applications for the Victor system were chosen because they were real-world problems, not
for ease of implementation on paraliel system. Final results outperformed state-of-the-art mainframes.
Woe will mention several of them because they give a good impression of what kind of problems can be
handled by large parallel systems.

¢ Fractals and raytracing. These problems are typical problems for parallel systems. An near-lineair
speedup is acquired when more processors are used. The balancing of the workioad can be done
dynamically and the only communication overhead is the transmission of parcels.

¢ Monte Carlo nuclear physics. Here the run-time was dominated by communication free
computation. This also resulted in near-lineair speedups when more processors were used. The
workload balancing formed more of a problem, as did the concurrent generation of pseudo-random
numbers. '

¢ Neural network simulation. Here communication took up a significant part of the runtime. The
simulation consisted on two phases; in the first phase the entire neural network was reconstructed

[22]

remanie Do bl AL b b A mnn B g b 2 e = e ' e e o U VP

e el M %
RS R N

) Transputers

on every nods and parameters were calculated for the second phase. In the second phase the
neural network layers were represented as rows in the processor mesh. Because a central control
was needed for this problem, communications with the central node formed a botileneck. Speedup
16 on a 32-processor system.

¢ Computational fluid dynamics. This involves solving of three-dimensional Euler and Navier-Stokes
equations for compressible flow of gas over a solid body. Different partitioning schemes were
tested and IBM concludes: the problem "scales well” in terms of execution time and memory
requirements.

+ Solution of linear systems using conjugate gradient method. Without mentioning any details, the
efficiency was 0.976. As no lime could be calculated for the evaluation of the problem on one
node, a smaller problem was used.

* Logic fault simulation. Here a deliberately defective VLS| circuit is split into smalt clusters of gates,
which are assigned to nodes. Independent clusters can be evaluated simultaneously. Then the
results have to be shared; this makes this application very communication-intensive. The overhead
of the store-and-forward message-passing plays up. Speedups were between 35 and 40 on a 256
node system. An inleresting note is that the speedup showed no sign of leveling off at 256 nodes.

* Multirobot simulation. The problem was reduced to iwo robot arms with one prismatic and five
revolting joints each. Each joint ran on ane path-planning node and one graphics node, all data
was then collected in another graphics node. The system was then able to produce 2.8 animated
steps per second. Speedups were nol expected due 1o the course grain implementation; it was
adequate to run this on 16 nodes.

IBM summary states that their highest performance was 224 MFLOPS (32-bit arithmetic), this was
reached with the fraclal program. The applications parallelized well, even though the V256 is
first-generation’. In some cases the performance on the V256 was superior to that obtained on a
mainframe or a vector supercompuler.

Four significant reasons why speedups are not linear in the number of processors are distinguished:
* insufficient problem parallelism
* communication bottlenecks
¢ synchronization overhead
* workload imbalance

The researchers on this project reasoned that, for most of the applications, recodingrthe programs o run

in parallel - at least on the V256 - was worth the time, in view of potential peformance gains. From their
conclusion we conclude that this was absolutely not the last that we have heard from IBM in this field.

(23]

"

Transputers

9. Conclusion

One of the most striking features of the transputer is the integration on-chip of several functional units
commonly found in external devices. For instance, the transputer is equipped with four hardware links.
This can be considered as a buill-in autonomous communication processor, as opposed to designs such
as [14MOOI]. Chip designers who need good communications facilities, for instance for real-time
applications, will at least consider integrating links on-chip. One of them is Texas Instruments which
already ships the TMS320, a 50 MFLOP digital signal processing chip with 6 autonomous 20 Mb/s links
with multi-channel DMA engines. The other functional units are the static memory and (in the case of the
T800) the floating point unit. As a compromiss, the VLSI implementations of these units are not always
the most optimal, in order to save precious chip space. It is to be expected that other chip designers may
follow this way as well. Another exciting feature is the extendable instruction set. This implies an upper
bound decode time and a fixed size microcode decoding program.

Other manufactures have never implemented the decoding of instructions as expandable as INMOS has
done with the transputer, this fealure will have lo prove itself in the future (perhaps with the introduction of
the T9000).

OCCAM is not generally considered a pleasant language for writing applications, this increases the need #
for compilers for other languages. Writing compilters for the transputer is not an easy task, as we have . .
seen. OCCAM creates the most efficient executables; this discourages writing in other languages. . -

The transputer is well suited for implementation in embedded and real-time systems. One of the features
that makes this possible is the hardware support for manipulating processes. Although this scheme is -
simple, it is not flexible: if another type of priority scheduling is required, a solution will have to be - I
programmed by the user, such as was encountered in {12BOAR90, page 40].

The transputer offers no kind of memory or process protection within the processor itself. This is caused
by the lack of a memory management unit and a privileged execution state. Between processors this
protection is very strong, as all input from the link can be checked. Operating Systems, when .
implemented for multiple users, can not assign differant users to the same transputer without making
sacrifices to speed. If needed, extra proteclion will have to be enforced in software. There is only a global
mechanism for trapping errors: stopping the entire processor when an error is detected.,

As shown, a general communications facility is required for many applications. Solutions will have 1o be
implemented in software, for instance multiple virtual channels. Hardware support will alleviate this
burden for users,

The announced top model transputer, the T9000, is said to have overcome some of the above mentioned
limitations of current models. We will have to wait and see... ‘

It is ctear that traditional Von Neumann machines have (almost) reached their physical limits. Parallel
processing has found its place in computer science research. One of the candidates as building blocks
for parallel machines is the transputer. Tha swilch to using transputers has not been an easy.one and will
not be so In the future but programming a Cray |l was not easy either...

[24)

- - . 4
i Lol ot L A R i AL . - . T

Transputers

References
[01FLYN66] M.J. Flynn, Very high-speed computing systems, IEEE proceedings, December 1966
{02HILL8S] W.D. Hillis, The Connection Machine, MIT Press, 1985
[03HOMES87] M. Homewood et al., The IMS T800 Transputer, IEEE Micro, October 1987
[04MUNTS88] T. Muntean, Parallel Programming of Transputer Based Machinés, 108, 1988
[0SINMO88] INMOS, Transputer Instruction Set, Prentice Hall, 1988
[06DIESS8] R.J. van Diessen, Transputer als bouwsteen voor parallelle architecturen,
. afstudeer scriplie UvA, 1988
[07HARP89] G. Harp, Transputer Applications, Pitman Publishing, 1989
[08INMO89] INMOS, The Transputer Databook, Redwood Burn, 1989
" [09WAARB9] H.W. de Waard, Transputers, AW B. Uitgevers, 1989
{1OWHIT90] C. Whitby-Strevens, Transputers, IEEE Micro, December 1990
[11MITC90] D.A.P. Mitchell et al., Inside The Transputer, Blackwell Scientific Publications, i990
[izBOARQO] J.A. Board, Jr. ed., Transputer Research And Applicatic_)ns, 108, 1990
[13SHEA91] D.G. Shea et al., The IBM Victor V256 partitionable multiprocessor,
IBM Journal Of Research and Development, September/November 1991
. [14MOQI] W.G.P. Mooij and A. Ligtenberg, Architecture of a Communication Network Processor
[1SNETN92] Internet news comp.sys.transputer, several articles, March through September, 1992
[16CO0OI19x] L.O. Hertzberger et al., Syiiabus Computer Organization 2
[17RTSI9x] J_. Vermeulen, Syllabus Real Time Systemen en Interfacing
[18GUNT81] K- Gunther, Preventions of Deadlocks in Packet-swilched Data Transport Systems
IEEE transactions on communications, April 1981
[19TANES7] A.S. Tanenbaum, Operating Systems, Prentice Hall, 1987
[20SCHA90] J. Schabernack und Alois Schutte, Helios, ein verteiltes Betriebsystem fur
Transputer-Rechner, R. Oldenburg Verlag, 1990
[21TANEB6] A.S. Tanenbaum et al., Using sparse capabilities in a distributed Operating System,

IEEE proc. conference Distributed Computer Systems, 1986

(28]

[22LANG82]
[23FOX88)
[24INMOB9]

[25INMOB9]

Transputers

G. Langdon; Jr., Computer Design, IEEE Computer Press, 1982
G. Fox et al., Solving Problems on Concurrent Computers, Prentice Hall, 1988
INMOS, The Transputers Applications Notebook - Systems and Performance, 1989

II:lMOS, The Transputers Applications Notebook - Architecture and Software, 1989

(26]

5

Lenguaje Occam

o atan o s sk - i e . W a - o . e i hat] — e e e [T TNOR
-

A Tutorial
Introduction to
occam Programming

. Dick Pountain
and David May

AMOS
BSP PROFESSIONAL BOOKS
OXFORD LONDON EDINBURGH

BOSTON PALO ALTO MELBOURNE

- " S - ' 1

St e St ¢ A o P At ted e e D et e e e e S A e e e sk e

First pubkshed 1987 by :
BSP Professionat Books !
8 John Street

Lonaon WC1N 2ES

A division of Blackwel Soemufic Publicahons Lid
Repnnted with amendments 1588

Copyright © INMOS 1987 -

INMOS reserves tha nght to make changes n
specrhcabons at any time and without notice The
niomation fumished by INMOS n this publication s
bekeved to be accurate, however no responsiDdty
assumed for 1s use, nor for any ninngement of patents or
otrer nghts of thid parties resuling from s use. Na
hcence 15 granted under any patents, trademarks of other
ngnts of INMOS.

@ . mos, IMS and OCCam are trademans of the INMOS
Gup ot Companes.

Al rghs reserved No pan of this puDkcation may be
receoGuced. stored n a retneval System, of transmunea. A
arr 1o o By any means, eectronc. mechanical,
PheiOCoD, NG, recording Cr othenwise without the pnos
e SS0N T NG COpyngnt Cwher

Frrewg ar Toeno :n Greéat Sman oy Heran St Prass
Sagn

Emsnibrary
Caranguing n Publication Data

Pountan, Dk
A tutonal atroduction 10 OCCaAM PROGAITITUNG.
1, Occam (Computer program anguage)
1 Take N May, Dawnd
005133 QA76.73.00

ISBNQ-632-01847-X

FURA I i

C s
. b, o " §

s

y

LI . - R

e Tt g vt S b i ookl imncine] s] i T oK s i ke i W S AA s s - o e

-

s

1

1 Intraduction 3
2 Signposts 5
3 The concepts 7
4 Fundamentals of occam 15
5 Arrays in occam a1
6 Channel communication 47
7 Characters and strngs 53
8 Replicators 57
9 Real-ume programming In occam 69
10 Conliguration 73
1 Terminating concusrent programs 79
12 QOccam programming style a3
13 Occam 2 langquage detinition a1
131 introduction 91

13.2 Notation Edl

! 13.3 Process 92
: 134 Rephcator 95
1 135 Multiple assignment 96
131.6 Types 96

12.7 Scope 98

13.8 Pro1ocol 100

139 Procedure 102

13.10 Vanable, Channel and Timer 102

13.11 Literal 103

13.12 Expression 104

13.13 Function 107

13.14 Timer input 108

13.15 Character sol 109

13.16 Conhigurauon 110

13.17 Invalid processes 110

13.18 Hetyping 11

13.19 External input and output 111

13.20 Usage rules check list 112

-

S e e T
:4 : e -'._' e

LY

L

1 Introduction

The aim of this tutonal 1s 1o introduce the reader to concurrent programming using the 0CCam language.
will provide examples of ©CCam programs, and discuss the novel concepts which 0CCam employs, It 1s not
however ihe detimitive guide to the symiax of OCCAM, that you will fing in the Formal Definition by David May
which forms the second half of this book.

occam is rapdly being recogrised as a soiution 1o the problem of programming coencurien! systems of all
kinds, and as a powertul and expressive caiculus for describing concurrent algonthms

Lo occam bears a specal relatonstup with the INMOS Transputer. a hign‘ pertormance single chp computer
o ‘f whose architecture facilitates the construction of parallel processing systems. The Transpuzer executes

) Qccam programs more or less directly (.e. 0CCaM (s the -assembly language of the Transpuer™.
H Paraltel computer systems can be designed in OCCaM. and then impiemented using Transputers as “hargware
occam processes’. This intimate relaton between the sofiware and hargware will be novel 1o most system
designers. wnho are perhaps used 10 a more ngid diviston of labour.

The approach taken in this manual 1s therefore gaverned by the realisauon that some of s poterial readers
will not be prolessionat programmers, but rather protessional engineers and system designers wha wish to
i use OCCam 1o design hardware systems.

. For this reason we do not assume extensive knowledge of any other high-level computer language, nor of
’ machine level programming. on the pan of the reader. We do hawever assume a famiianty with the general
i concepts ot compuung and computer programming, it 15 nol a manual for the novice 1o compuung.

I The tutanal is concerned purely with the language 0CCam and will only briefly address the ssues of installing
occam programs onto Transputer systems, It1s intended as a general inircauction (o the languaqe. equally
swiable for those readers whao intend to use OCCaM on conventonal camputers

We snhall not insist nat any parmcular computer campiief coOMiNalion (o ngeed any hargwa‘e at all) be
avanable to the reager hargware depengent aspects ot CCCAM are concerirae o a single craoler at the
eng of the course

‘ For the same reasons there wil be no insiructon in the detailed workings ! particular QCCam campilers,
. Etror reporung wil not be covered except wn a general way Detais of this king are 10 be foung n me manual
which accompanies an QCCaIm campiler

Acknowledgements Many thanks 10 1he INMCS s1alf who 10ck tme out I'e™ whling !he comre ‘e and other
TGS 10 CNEC TS Terl ANQ 10 MOreve the examates In paricwiar my inarss 2 Davio Mav Ron wisorde ang
Si2een B0 05300 Jenih Steven Nas wedl IS DIOR uP IC 03i€ Cunng tne cou'se of the language c& eloprnent
wnicn 10Gr Clace g.nng 1956 ang 1387

s

e b A ee b ke et o £ e

1

Intraduction

R NS B e e L TSI WP S APEIE SRS I S 5 “
I - M - . S
gy e - -

<

2 Signposts

As an ad to the reader. the author has placed a vanely ol signposts throughout the text. 1o sgnal points of
special interest. The meanng of these signposts 15 as follows.

Take care. Sections so marked are those which explain concepts which are especially likely ta mp up novice
occam programmers. This may be because ’

1 Thus concept 1s intnnsicatly difficult.

|
2 0ccam handles this area in a different way from traditonal languages with which the reader may
be famihar

3 This 15 a himitation or resinction in current implementatons of Qocam.

These sections will repay frequent re-reading, especially if you have wntten an 0gcam program that doesn't
wark!

Hint: These are tncks and dewvices which proved useful to the author while learrung oCcam.

Key Idea- A concept which is tundamental ta the understanding of oCCam. Make sure you thoroughly grasp
. '

Aside A bnel digression from the main thread of the tutonal into broader computing matters. Expananced
programmers might wish to skip them.

Technical Note: A bref explanaton of some imolementation ssua. i you don't understand i, don t let it hold
YOou up but skip it and return later

T T ey

b ™

2 Signposts

T RrmS e e rrS AT D TR

]

172 I

. -

i o " - il A i e I T L T VOV PR

3 The concepts

Concurrency
Since John Von Neumann discavered the pnnoiples aver 40 years ago. all digrtal computers have been
designed In a fundamentally similar way

A processor. which can perform a set of basic numeng manipulatons. is connected 1o a memary system
which can stare numbers. Some of (hese numoers are the data which the cemputer s requitec 1 process.,
The other numbers are nstructions 1o the processor and tell it which of 115 basic manipulatons @ perform
The snstructions are passed to the processor one atter the other, and exécuted. Execution of 3 computer
program is sequential. consisting of a seres of pnmitive actions tollowing ane anather in tme.

Everyday examples of similar activities in the real world could be reading a book (one word at 3 time), or
“executing” a kniting pattern by tollowng the nstructions in sequence.

Computers are mainly empioyed 1o model the real world. Even the simpla act of adding 2 and 2 s a model of
the real world. except when it s performed by or for a mathematician who 15 interested in the pure properies
of numbers. Far more requentty 2+2 1s a moded for the act of adding two pounds, or doltars, or appies, or
awplanes. 10 an existing stock of two.

Certainly the major applications of compulers. such as accounting, banking, weather forecassng. process
control and even worgd processing, are gxploitty modelhng objects, events ana actvities in the real worid,

The world which we inhabit is nherentty concurrent. Al the scale of human affars, indeed ar any scale
between Ihe cosmelogrcal ana the quantum mecnanical, the world behaves as if it were organisea into three
spatiai dimensons and one tme dimension

Events happen in both ime and space 1113 cossible tor twa evenis (0 occur in the same place x~e aher the
Qmner tqn ime (1 @ "seguentallyy ang eqgrally coesle for events 1o occur in aiflerant places a1 e sdme ume
{i@ concurrently or n paralien .

Concurrency 1s so much a feature of the universe 1hat we are not normally concernad with it a 3. The lact

that, lor instance. the populatan of this planet ail live aitterent ives in ditferent places at the cetent ime s
50 obvious that one teels shighily embairassed n siaung it,

However 1t s wortnwnue ta reflect on ‘he corrast tetwegn the cancuirent raiuce cf 'ne a=-= and the
sequential nature of tne aqutal comeuter S-ze me man aurgose aof the cemputer 15 13 ~22: e world.
(here would seem o Ge 3 Sercus msmalch

In oraer 10 modet the world with a computer pregrammers of conventianal computers have “3 “nd ways
10 mimic concurrent events using a3 sequence of NSirLCIONS This 15 not a problem 0 an az> cauen ke
accounting, where 1t 15 perectly reasonable 10 regard goods despatcned. maienals ana mane,s Mowing m
and ocut as happening sequentiaily :n hme

It1s more of a problem when you wish 1o control a petfre-charmicals plant by computer Every process in avery
part of the piant must be mamtored and contrciled at the same time. all the tme. 1t 1s not acceszabie for &
Cnsis in ane reactron vessel to be overiooked because he <omputer happened 10 be logkung &t a gitlerant
reactor at the time.

Concurrent programming

The eariies! digital computers were programmed using the basic numenc nstructions undersiood by the
processar. Such programming 15 50 1edious and emor prone that computer SCIENUsts soan Degan o design
“high-level™ languages, startng with Fortran ang leading to the current prodiferation whach roaces Basic,
Pascal. Modula 2. C. Ada. Fonh, Lisp. Prolog ana hundreds of others,

These Iangz.';ages aliow programmers 10 express the logc of a program i notations wien e readable

8 . 3 The concepts’

Engiish [ar French etc...) words, albeil with a fightly constrained and reduced syntax. A program called a
compiler than translates these natations nfo the basic numenc Instnictiens which the computer understands,

For the majonity of languages. the product of the compiler 1s again @ sequence of instructions, to be executed
ane at a bme by the processor just as i they had been produced by hand. In other words these languages
fahiutly retlect the nature of the undertying sequential Von Neumann computer it a torm more paiatable to

human programmers.

To adequately model the concurrency of the real world, it would be preferable t0 have many processors all
working at the same hme on (he same program. There are also huge potential performance benefits to be
denved fram such paratiel processing. For regarcless of h far electroric engingers can push the speed of
an ingrvidual processor, ten of them running cuncurrehﬂy\ Wl sull execute ten hmes as many nstruclions in

a second.

Canventonal programmung languages are not well equipped 1o construct programs for such muttple proces-
sors as thew very design assumes the sequential execution of Instrucions.

Some languages have been modified to allow concurrent programs to be wntten, but the burden of ensunng
that concutrent parts of the program are synchromsed (1.6 Lhat they cooperate rather than tight) s placed on
the programmar. This leads 10 such programming beng percaived as very much more difficult than ordinary

sequential programiming.

occam is the first language to be based upon the concept of parallel, in addition 1o sequental. execulion,
and 1o provide aulomalc communication and synchromsalion between concurrent processes.

Synchronisation

II's possibig 10 write concurrent programs n conventanal programmmng languages. and to run them on con-
ventignal computers In essence whal nappens IS that the programmer wries a number of programs and the
comoputer prétends (o run them ai at the same tme Dy runmng a piece ol each gne in turn, swapping at very
short iMervals, untl they are all gone

However this kind ol programmung s more githicult than siraignttorwarg “do this, then do this ren do this”
sequential progeamming Crugely put. this 1S because a sequential program has only one beginting and one
eng Dul a coNCurent Program may have many beqgmnings and many ends

A sequenual orogram stans. runs and then himshes. 11§ @ither running of it § not Ohen we are not gven
ComaENEa ADOU! exactly wnen it hnisnes (though we usudlly want 110 D& as quick as possc e on a given

compuien)

The wes worn melapnor of a knitng pattern can be waglructive here A krufing pattern consisis ot a hst ol
\swuCtons on how 10 mampulate wool and neegles which il tollowed laithlully lead to the procucton ot say.
a swealer

Some nstruchons will have to be tepeated many hmes, and the pattern will use an appropyiate rotalion which
teils the kaitler to do this without hawing to wnig out gvery single step. just hk@ Lhe repeltion struciures ot
computer 1anguages.

For'a single knitler who 15’1 1n @ hurry. the swealer will take as long as 1t takes 1o kmt; the sweaters hrushed

when (hey ve performed every instrychion 1n the pattern
In Occamm s could be represented by, say. -

SEQ
...knit body
...knit sleave
...knit sleeve
...knit neck’

whnere he SEQ means “do all these in sequence’.

o ——————i . - — o — - —

- - g -
R e e, — s e s m e

3 The concepts

Aside The canvention of usin

g of threa dots . . . will be used throughout th
panskof a program. n ardinary Enghsh. whose internal details a:‘:ag not reI:
...knit body They should be distinguished Irom pure comments,

~=This is a Comment
e program, . Such comments are purely for expianation

rest of this tutonal to descnbe
vant to the exa—gple. as with
inroduced by two gasnes, as in
purposes and do not karm part of

But what about a smail firm of kn
fters, who split up the sweaters into nechs, si
and share out the johs? They have orders ta hulfil and 50 hme now mac;;sponenm (bodies. - sleaves)

The most efficient way to proceed is for eve

ong to knd
finushers who pul sweaters fogether cant m ry their indiadual bits concurrently. Unfortunately the

ake a swealer until they have a neck. two slegves and a body.

Fram a picture of unconcermned

rural bhiss by the fireside we switch to
“hurry up with Ihat sleeve™ The point being that rushing the pattemn
indication that the sweater 1S tinished.

one of rascible finshers screaming
for a sleeve 1s no longer sufficient

The tima of fimishing now ﬁ'laners i , depe
very much and, more importantly, firishin
:msr;:ng of other jcbs outside the ndividual knitter's control. Unlessyall the I:.n?n:rr? ;z: e st
ynchromsed the result 1s very inetficient production, with everyone waiting on the slow;'sl:e:nz e sunaoly

m
Se?n p?“.‘l:gi nan?;;frslhlurssgzregslm cgg:rm?uslv They are nat as mtelligent nor as patient as even the most had
. eranng programs dont hrush thew parts of th NG
result 15 usually that the program won t run at ail, rather than it merely runmnt; |tn:ﬁ"|gf:a:ttl;he umes. e

g::‘;ﬁ::;s :rr:: rin!inlnllely patient in another sense, for a program is perfectly prepared to wat larever f
tCh will never arnve becausea the synchr carrent
MO amers 58 deadioen Y cnisanon is wrong (a ssuation known @ concurrent

The
pa:sb:;r;gus:.u%::;\c:onerg prog:rams can be difficult to write. Achieving the necessary synchromiszoon between
w Deen largely the respansitiity of the programm
er w &
system ol signals by which eacn par can telt the others wnetne?gor net s r::dr;'as (0 wrle in a1 elaborate

ch pan of the program m fo] h n Th
a preg st cenunually look at these s.gnals 1o see an =Ty an e
Er hr n 4] Heig] whnemer or not it can =
pregram coge required to achieve tnis s ohen ca SiIdefacie ang wrik g 1t consumes a lo! o 1 =& which the

programmer could have speni wnt § 1Nose parls of Ta Clually C
L] 4 i S i
p e DFOgTram wnich acl.ally co the job [In,r'.“g sweaters

(il\le 1 3 CONCurent pro m i g
qQra ot 3 cemplexty if becoemes c.Hic K i mm. Tyl
; 0 reiat L an cult !Of the orogra er 10 eve~ znderslang

Occam'snrr'o'mes the writin congurren m qe0ng 3 a
o ! g of ZShCutent orograms by is~g Mo "

3 ! most of t~2 Zarcen ¢ $ynchic~ 33u0n awa
frem the programmer For insiarce our Conguirent =rdlers couid be gese: sed oy ' 4 ¥

SEQ
PAR
...knit body
...knit left sleeve
...knit right sleeve
...knit neck
...5ew sweater

s expresses the fact that alpa | mnp n
The xpr i t ns are knited i parailel (P ! h
oy . | {PAR) but that Sewing ollaws Sequefﬂa."y whe

Communication between the ditter
ent pars of a program s bui into the Jangua synch
communicalion - that 15. @ message will only be sent when both the senurgua:?: :T}Seet:fé:éleé: '::e reac::msm

Il one party becomes ready betore 1h
e other it will autemancally wait for th {
e other
gﬂ;n;:!and from the pregrammer The only responsib.ity lett with the programmer 1s lh:l o‘:‘alatg:g:meeaﬁgg:
sunng that the second party becomes ready SOmetme |that someone actuaily Js Kruthing & steeved)

te e e e i e 8 e

0 . 3 The concepts

T I T T T R W A T Y LT

We could add such commumications 10 our knung descnption kke this:

PAR
SEQ == body
...knit body -- knitter
. . .output body
SEQ
...knit right sleeve -= sleeve

...output right sleeva -« kpitter
...knit left slaeve
...output left sleave L

SEQ | -+ njack

...knit neck -~ knitter
. ..output neck
SEQ -- finisher
PAR .
.. .input body
SEQ

...input right slesave
...input left sleeve
...input neck
.. BEW aweatar

This 1s a descnplion of the making of one swealer by four knutters ail working at the same ume, and all the
synchromsation required 15 implied in it structura. It works by combining simple processes (“knit body™ into
larger processes {each kind of kmtter) wiuch can themseives be combined nto a stll larger process (make a

swealer).

Processes and channels
In OCCAM programming we réler to the parts of a program as processes
Key idea A process slans. performs a number ol actions and then hnishes

This getinmon (1§ an orgnary sequental program but in GCCAM more than one process may be executing
at the same nme, and processes can send messages to ane anotner

In corvenional programming lanquaces such as BASIC much of fre actwity Of a pregram consists cf changing
e vaiLes sUCh ds NumoDers of sinngs ! chasaclers sioreg . canabwes Tare lor examzve imis ratner
uneaciing BASIC program

10 LET A = 2
20 LET B = A
40 PRINT B
50 END

~The result ol running this program 15 that the value in botn vanables A and B becomes 2. and hine 40 causes
thus valug to be pnnted oul on a VDU screen

There 1s communicabon of a kmited sort going on w ths program, The PRINT command provides ong-way
communicanon between the program and an external dewice. the VDU screen.

There 15 also a sense in whuch the valug 2 has been commuricated from A to B, though we woukin't norrnal!v
digruty this act with tha name ‘commumcauon” because there 1s only one BASIC program running and It's
being executed one bne after analher. instead we tend 1o regard the value 2 as being stored in both A and
B

Now imag e that we couid have wo such programs runfing at the same ume on diferent computers and

e
- N * ~"
. ‘ n -

LN R
- . A
. P . N . . '

. N .

- - . - - -

ottt Fm et et ot o Ut int] A, o Al Aot it B Ak £t et ke .

A

7

3 The concepts
1

that in some as yet unspeaied way they can communicate acrosg space:

10 LET A = 2

20 oo 10 LET B =

20 END

computer 1

computer 2

The deswed result is that the vatua of A Somehow crosses the gap between the computers and sets B to 2
s Bto 2.

It 1s of course pessible to achieve this end with a BASIC program, one could for mstance connect th
R e

pon, and 10 match the physicat attributes of the pons {e g. bitsssecand ana worg length) sometrhing like
i [L=M

—
10 RSCONF1G
20 RSINPUT a
20 LET B = A

20 RSCONFIG .
30 RSOUTPUT A

RS232 link

40 END 40 END
_
computer 1 computer 2

occam permuts this sort of CommuNICaton as a normai feature of programm

INSIFICTIONS whuch have 10 be aiferent tor each kind of communications a oo 2 doesn' requre special

ence.,

More impontantly, 6CCam doesnt mind whether the two programs which so comm

aierent cormpulers. or are st two processes funning concurientiy on e same co Ut L unning on

mputer.

As well as vanatles lor Slonng +alues OCCam uses channels f
many ways Lke vanan'es. esces! inaf rather than a55s
BASIC) we ouiput to them or nput from them

©f commur canng values C-s=nels |
. 00k 1n
grung a value 1o them +ar storage (8.9 LET A = 21n

The value outb.! by ane process ig nput by another precess the chan
two processes A singie chanrel can only |0In two processes, it's hke a
conlerence Channeis are ong-way Oniy. 50 WO would be neeced tor a

@ Gehaving ke a p.oe joiming the
£ersan-ta person cat rather than a
T A3y Communicghon

Key Idea A cran-el s 3 cne-way poInt-la point ink Irem one process to e cther process

A transter 2.er 3 znannen s aci.aiy an act ot copying if ihe vaiue

15 R e
retains 1s valye arg a Copy ot 1145 5en! aver the channe| OulpLiEm & vanaie then Tl vanaole

ogcam uses the symbol 1 tg mean outpu! and ? 1o mean INpUL 50 we Coud express the abowe examples

A2 A?B

_—
process 1 Process 2

whera A is a channel and B 13 a vanabie. This reads as “ouiput 2 to A" and “input from A tp B°

Since processes 1 and 2 are independ
ent, they might well be executed at d:¥
werent imes. -
fernng a value from one end of i channel to the other can gnly happen when both prozesl};i :;?L;!:ns
Y.

In other words. i the culpu! in process 1 s executed betore the wpul
automatca.y wan ior process 2 Zetore sending a value Vice versa, o

in precess 2 executes, coooess 1 will
he .nce1in process 2 were executed

;3

A s s e e e et @ L e S s M

N PR . . -
Rl T IR I L PR PPV AN VIREY VPPN S-SR SOr S 2L PSP R N

12 3 The concepts

belore oracess 1 had cutput, process 2 would wart for a value to appear. There is no way for a value to be
output \nto Thin air™ ana lost

With our hypotnetical BASIC programs above there 1S no such assurance. What would happen should the
programs be “out of step” depends on tha detaiied workings of the parucular hnk we used.

It migtt well be that it program 1 reached RSOUTPUT A before program 2 reached RSINBUT A the value
of A would be sent and lost. Equally ¢ program 2 arnved first it mignt stop the program and report an errar
such as bad connecon™.

The two novel leatures which distinguish channels from qu"iables are;

1) A channel can pass vaiues either between Iwo processes runming on the same computer, or between two
processes running on ditferent computers. In the tust case the channel would 1n {act be just a location in
memory, rather Iike a vanable. In the second case the channel could represent a reai hardware ink. such
as a Transputer link or other senal communication bine. 8ath cases are represented denucally in an 0CCam

program.

Key Idea. An OCCam channei describes communication in the abstract, and does nol depend upon s
physicat implementaton. You can thus wiita and test a program using channels without hawing to worry
about exactly where the different processes will be axecuted. The program can be developed on a single
processor warkstation: when i's hrushed and proved you may decide 10 distnibute vanous piocesses in the
program onto different computers, and do so by making a lew smple declaratons at the beginning of the

program.

2) Channels are pabent and pohte. [t an input process finds that no value 15 ready # will wart until one
is suppied, withoul any explicit instruction from the programmer Equally an output will not send until the
recewer 15 ready This intreduces the bime facior into programming, bul in a way which hits much of the
responsipiity lar imexgeping” off the programmers shoulders

The descrption of our kmmers could now e whllen using channels to transpart the pans’

PAR
_SEQ
...knpit body
bodychan ! body
SEQ -- slaeve knmitter
...kmit right aleeve
sleavechan ' right._sleave
knit left sleeve
sleevechan ! lsft.sleeve

== body knitter

SEQ -- neck kpnittsr
.. knat neck
neckchan ! neck
SEQ == finisher
PAR
bodychan ? body
SEQ

sleevachan ? right.sleesve
slasvechan ? left.aleeve
nackchan ? nack
...0ewW swaatar

Three ditferent channels are needed because each may only join two processes. for example bodychan joins
the body knifter to the hmusher. A5 we shall see n the next chapter. when OCCam 1s used as a camputer
language, rather than for an iformal descnption as here, channeis and vanables musi be deciared betore

they arg used.
Comrumcation aver sell-synchronising charre's 1s a novel and powertyl part of 0CCaM, and it can fendef

the ~rtrg ot concument programs a far less lormudable task than 1 is with conventional larguages. In the
neut crapter we shal start in eamasi to construct occam programs rom the simp'e processes |usi outhned-

Sing

Eat o

S i s TS L S e

cme i e —

- . . . B g ' i * o
ety e et iy DR s g A e dade sl w4 s d s s B J‘d i
e ek St o e e .

4 Fundamentals of occam

Primitive processes

All oCCam programs are bult from combinations of three kinds of fve Droc
' q
kinds already: they are assignment, nput and cutpul. prmiive process. We have seen all threa

Assignment process
t

An assignment process changes the value of a vanable. j i
. Just as it wouid in most
symbol for assignmentin OCCAM 15 := So the assignment process: * conventonallanguages. The

frad = 2
makes the vaiue 1n vanable fred twa The vaius assigned to a vanabie could be an expression such as:
fred := 2 4+ 5
and this expression could contain other vanables:
fred := 5 - jim
Take care Be sure not to mix up = and 1= In OCCAM = means a tast for equality, not an assignment.
Mt;luple assignment. assignment to more than one vanable at the same tme, is also passi' B GCCAM;
fred, john := 2, 3

This muitliple assignment process makes the value in the v
arable fred "#0 and the value .n th
john three This s really usetu for swapoing the value of vanabies: o vanasle
fred., john := jochn., fred

It 15 impeonant 1o nole however 1hat the rules ol QCCam do n '
ol allow’a vanable 1o appear
on {he lem sige of a muttiple assignment. So: PPEar More than once

fred, fred = 2, 3 == ILLEGAL' same wvariartle twice on the laft

Aside Trs)s ro!a pamcwarn. osefu thing 13 do
: lane u anyway butili1s mportz=io realise when Js.:
i [he SuDSErpt Cf an array as we shall see raler ~5ng vanables

-

Input process

putl process npuls a value from a channel into a vanable. The sympal for puf
Y n n O 2, Th
Anr I ccam s ?, [}

chanl ? fred
takes a vatue from a channei called chan3 and puts it into vanable fred

Input processes can only input values to vanables. It 15 quite meaningless to input to a constant or t9 an
@xpression.

An mput process cannot proceed untd a comesponding output process on the same channel s ready.

Hint: As an aid 1o memory ttunk of the queshon mark as meaning “Vhere s my value 7

RS IAN

i et iramieelma e irmr —m e e s e e e or iR Rl A ak - L ae e e At

14 4 Fundamentals of eccam

QOutput process

An oulput process outpuls a value to a channel. The symbal for output in ©CCaM is !. The outpul process:
chanl ! 2

outputs the value 2 to a channel called chan3.

The value output to a channel can be anything that you could assign 1o a vanable, so it may be a vanable or
an expression, and the exprassion may contamn vanables.

1
[
An output process cannot proceed untd & corresponding lr{pul process on the same channel is ready.

Hint: As an aid to memory, think af the exclamaton mark as meaning “Here's your value I°.

Communication

Communication gver a channel ¢an only occur when both input and cutput processes are ready if during
the execution of a program, an Nput process IS reached befora its corresponding output process Is reached,
tha input will wait unal the output becomes ready. Shouid the output be reached lirsi, it wil wait for its input.

A value communicated over a channel is copied (o the input vanable and the value of the output vanable
remains unchanged,

Key ldea’ Commumcanon 18 synchronised.
These then are the budding blocks from which QCCam programs are made Each such primitve process

must ccouny a separata na n an QCCaIm program. and s e simplest acuon that QCCam can perntorm. an
atom’ ot GCCAM pregramming

Key ldea' OCCaM programs are buill by combining pnmilive processes

SKIP and STOP

OCCOM Ras two spec:al processes ¢alled SKIP and STOP.

Key Idea The process SKIP stans goes nothing and then tin'sres

SKIP may be thougrl ot as representing a process which does noting It m:ght be used in 3 party completed
program 0 place of a process which will be whtten later, bul wnich lor the moement can be aliowed (0 ¢0
nathing

For example a process which 15 1o duve an electnc molar could be replaced by SKIP when tesung the
program wihout a motor There are also 0ccasions when ygu want noiming 10 happen but the syntax of
QCCAIM requires a process o ba present

Key Idea Tha process STOP starts but neves procaeds and never hishes,

STOP may be thougnt of as representing a process which doesnt work. or 1S “broken”, It might be used. tke
SKIP. lo sland in for @ process which has yet 10 be wrtlen.

For exampia a process to handle amars could be reptaced by STOP in the early stages of testing a program.

Tha eftect of a “broken” process tends 1o spread. because any process which communicates with 3 broken
procass ai itsell never imsh. and hence it becomas broken (oo,

.-

CESE T

——— e o e ay — 1 -

PR RTCI

- e 3 'Y) -

Aine s et e val e i

4 Fundamentals of occam

Termination and stopping

So far we have loosely used the term “inish™ when refernng to processes. Can i
. curen
occam requires us to be rather more precise than s, et programming in

A pracess which completes all ts actions is said to terminate. Normally a process stasts, proceeds and then
terminates '

A process which cannot preceed 1s said 10 be stooped which is not at all the same thing. A stocoed program

never lerminates. A process might be stopped by wailing lor an event whuch will never hapoen, due © a

programming errof, in which case it 1s said to be deadlocked, '

Carrect lermination of concurrent Drograms 1S net a tivial maner. since they may have many parawel processes

vcvguch ca;r)\mumcale with one another. This topic 1s of sufficsent importance to ment a chapter o isell {see
apter 9).

Constructions

Several pnmitive processes can be combined into a larger process by specitying that they should be periormed
one after the other. or all at the same wme, This larger process Is calied a construction and o pegins wath an
oCCcam keyward which states how the component processes are (o be combined

SEQ construction

The simptest construction 1o understana is the SEQ [proncunce 1t “seek™, shon for sequence wouch merely
5ays "do the fotlowsng processes one aner another”. Here 1s an example

SEQ
chanld ? fred
Jim = fred + 1
chand ' Jaim

This says ~do n sequence ngul from chanl 10 fred assign fred + 1 (¢ jim and a-=ut Jim 1o
chand In seguence mears 13 De more precse (Al the Nex! pracess Caes Na! S1an un™ ~e previcus
one nas terminaled A SEQ =vIIess lhereicre works |ust ike a program W any Ccnveniuona gramming
languace o hisnes wnean s 'asl cemponent process hinisnes

Nance ne way that ine Processes which make up this SEQ £rocess are incented Sy wo chara=:s from he
wore SEQ 50 that they line up wnoer ihe @ This is net merely 1o make (Ne program 0ok preT & but Is the
way that QCCaMm knows which processes are par of the SEQ

Whenever a cansiruction 1$ buit. we ndicale the extent of the new process by ingentng all is component
processes Dy twa characters Ciher languages use specidl characiers ke {. . . } or began. . _ead lor this
purpose. but OCCAMm uses iIndentation atone

Key ldea. A SEQ construction lerminates when its las! pracess termnates.

Take care. SEQ s compuisory In QCCAM whenever two of More processes are 1o run in secuence. In
convennhonal programming languages. sequence 1s taken lor granted and mergly wnbng one stz2ment attar
another guarantees they will execute in sequence Because OCCAM oflers other modes of execubon apart
from the sequental. sequence must be exphtitly requesied

T, - - -
LD oot on et S 37 2
e Y e e o
5 fs vl e Do - " _?

L L TS M g

s

R ol e R L)

16 4 Fundamentals of occam

PAR construction

The PAR construchon, short for paratlel, says “do the following pracesses all at the same ume”, re. in parailel,
All the companent processes of @ PAR start to execute simultangously For example:

PAR
SEQ
chand ? fred
fred := fred + 1
SEQ

chand ? jim D t

jim = jim + 1 :

says “at the same tme. input from chan3 10 fred and then add one lo the resuit, whilst receving input
from chand lo jim and then adding one to the resuit™. ,

Nohce agan the indentation. The first two character indent telis occam that the PAR process consists of
two SEQ processes. The second level of indantauon shows that each SEQ is composed of two primitive
Processes. . -

Natice alsa that the processes ;nh»ch are 1o run in parallel are st!l wntten in sequence just as in any ordinary
program. This is purely a matter of wriing convenience. The designers of 0CCam could have chosen 1o
make us wnte paraliel processes Side by Swle, which would give a stionger impression of what 1s gosng on:

PAR
SEQ SEQ
chanl ? fred _chand ? jim
fred := fred + 1 jim = jim + 1

As you will quickly see though. this would become hopelessly clumsy once you had more than two or three
paratel processes in 3 PAR 1t would exceed the widih of stangarg VDU screens and prinier paper as wel
as .nvoiving the typst in ledious tabulanon ,

The ~mporant thing 10 keep in mind 15 thal 1n 3 PAR the written order of the companent processes s irrelevant
as i~ey are all pertarmed al the same tme PAR 15 not quile 5o easy (o underslang as SEQ because (he
\dea of (Ngs happening simultaneously 0 computer progiams s new (0 many PIOgrammers.

For nstance we can now nd longer know for sure which ol 1he two parallel processes in the above example
wii fush st 1t depends upon wiich input becomes ready Lrsl. ~nich in turn depends upcn a couple Qf
cuizr .l Drocesses etsewnere in the program

Tre ceauty of OCCAM s that (his goesn t matier because (he PAR construchion sell has a sing'e well dehned
begnring and a single wetl gekaed end We know thal the two SEQ processes wil slart at the same 1ime,
run when thasr Inputs become ready and then lgrminate

All 1he component processes w1 3 PAR start at the same hme., ang the PAR dself terminales when all ds
corponent processes have lerminated and that s all we need 1o kndw.

Key Idea This is the central pnnciple of OCCAM programming. compound processes built up Irom simpler
processes behave just ke sumple processes 1 @ they star. pertorm actions and then lerminate. They canin
turn become ihe componens of a stll more complex process.

There 15 a lot more to ba saxd about PAR, especally in reiation 1o commumicalion over channels. Moreover
there are several mora consiruchons i QCCAM, wich builkd processes that repeal or make conditional
chouwes.

But belore going on io such maners. something needs t be clantied. Up tll now we have been using
chanrels and vanadles hke chan3 and fred as «f they, 5o 10 speak grew on frees. Ttus 13 most dehrutely
nct *me case. in OCCAM both channels ard vanabies need to be speched before thay can be used It mares
sense 'o issuss specificatons and types Defore we go any ‘unther. so that tha examples we slugy can Dé
vaua OCCAM procrams

4 Fundamentals ot occam 17

Types, specifications and scope

occam, ke Pascal and many ather languages. but unfike BASIC, requires that every object mat is used by
a program should have a type which (eils OCCaM wnat sort of object it 15 dealing with. Furihermare the type
af an object must be speciied before it can be used In a process.

We have been using named channets (chanl and chand) and vanables (fred and jim without any
specificaton so far, a situation which will now be rectified.

Names

Fisst let's deal with names themselves, In OCCAM the names of objects can be as long as you lke, and
they must start wiih a letter of the aiphabet. The rest of the name. if there 1s ona, can be maoe up of letters,
digits and the dot character, Upper and lower case are distnguished by 0ccam, so that £red and Fred
are ditterent names. These are all valrd names:

x Y fred chanl Chan3 new.fred old.fred

occam keywords such 54 SEG, PAR and CHAN are aiways in upper case and they are reserved. In other
words they cannot ba uiid 3% names that you create.,

These are not valid names:

3chan -= doesn‘t start with a letter
old-fred -- contains illegal character *-'
fred$ -- contains illegal character '35’
-old fred -~ contains a space
CHAN -« raserved word CHAN

Data types

Vanables may 1ake on one of several daia types, 1@ wnds ot value The following are the TS which are
always provided by occam

INT -- an iateger or whole number.
BYTE -« an integer between { and 255;
-~ very often used to
-- represent characters
BOOL -~ one of the logical truth
== vajues TRUE oxr FALSE.

We could specily the vanables i the above exampies as:
INT frad, jim :

which means that they can be used o represent posiive or negative whole numbers. Severas nables may
be specihed at once. as above, by liskng them separated by commas.

Technical Note 0OCCam actually provides more data types than those outlined above. Caerng tor non-
ntegral numoers by supplying vanous Real Number types. These lypes also provide fixed length number
representation INT16. INT32. INT64. REAL32. REALE4 are numeng lypes represented usng 16, 32 or
64 tuls respectively. The details of these types can be studied in the Formal Defiruban at the rear of this book.
For the purposes of this tutonal we will work oniy with INT, BYTE and BOOL and will make m) assumptions
about the physical size of an INT.

18 4 Fundamentals of gceam

Channel type and protocol
Channels are alf of the type CHAN OF protocol It is necessary 1o specity the data type and structure of
the values that they are to carry. This 1s called the channel pratocel. For the present we shall be contem 1g
regard channels as able to carry single values of a single data type. rather like vanables.
A channel which cames single integer values would be specihied by:

CHAN OF INT chanl :

where the INT specilies the type of values which may; paf's along the channel chan3. The type of chan3
is CHRN OF INT. In general the protocol of a channsl is specfied by CHAN OF prolocol.

Timer type

The type TIMER allows the creation of tmers which can be used as clocks by processes. Timers will be
discussed hurther v Chapter 7.

Characters and strings
©Ccam does not have any type CHAR or STRING 10 represent alphabetic characters or words Instead

characters are represented as numbers of type BYTE and stnngs as arrays of numoers of type BYTE. We
shail return to this subject in a later chapler,

Booilean type

Boolean values of truth values aré produced as the resull ol lests performed by compansan Zperalors
oCCcam previges tne lodowing lests:

= -=- squal to

<> -=- not aqual to

> -~ greater than

< -~ less than

>= -- greater than or equal to
<= «= less than or equal to

Trese tes’s may cnly be apphed 10 two values of the same type and they aiways yeld a value ¢* h,0e BOOL
For erampi@ the 185t 2 <> 3 yelds (he value TRUE since 2 0oes not equal 3

The truth values TRUE and FALSE are OCCam constants which can be used i1 any situation where a test
couid be used, you may ke to thnk of them as lests whose oulcome 15 decided n advance

Constants
A na;'ne can be given 1o a constant value by specitying it with:
VAL fype name IS value:

S0 we could wiite:

VAL INT year IS 365:
VAL INT leap.year IS 166:

R Rt s ian i e A gl ot g '-:--‘-' -'iﬂ.n?‘%ﬂm

et i A e e e i s) Al m Al At e e 4wt T araled e M man mn i S i R L,

. 4 -

4 Fundamentals of occam

The type can be omutted as 0CCAM can deduce it from the value
VAL year IS 365:

Possible ambiguities aver BYTE and INT are resolved by explcily speatying the type of the value, which
we'li see later on. '

Notice the colon. which 1s used 10 end all the diterent kinds of specificanon This colon Joins a specification
to the process which follows .

- [}
Scaope

In QCCam, vanables. channels and other named obrects are local to the process which immecately foliows
ther specihication. What this means 15 ihat the object to which the name relers affectively obes not exist
inside any other process. For instance in this eéxample:

PAR
INT fred :
SEQ
chan3 ?
.- .more
INT jim :
SEQ
chand ? fred
...more processes

fred
procesases

an error will be reported. because fred exists only mside the hrst SEQ anc im exists only insoe the second
SEQ The secong fred will therelore look 10 OCCAM ke an unspectiea vanable

The colon which engs a speciicaton in effect |oins the specrication 1o me process which 1= aws it and fo
reiniarce the connectiaon spectcanons are indenten 1o the same level as ine process This fo Swing process
1§ the scope througnaut wmch the specification nads

The same name may be wsed for diferent objects with dilerent scopes, For insiance. we ca.¢ use fred
for pboth vanables in the above example

PAR
INT fred
SEQ
chand °? fred
...Mmore Processes
INT fred
SEQ
chand ? fred
., .more processes

the two £reds are now different vanables, each local to #s own SEQ process, and altenng the vaue of fred
n the fist process has no eflect on the second.

ITinside the scope of a vanable (or other named object). another vanable is specified with the sama nama,
then within 115 own scope this namesake replaces ihe ongingi, The anginar coject is masked by T nawcomer.

A L R b A A e s r— bt B e ey o b e —

20 4 Fundamenials of occam

Far example-

INT fred :
SEQ
chand ? fred
INT fred :
SEQ
chand ? fred
.. .IOr8 Processes
.. . mOTe processas

In this case. the nput from chand goes inio the second fred, and tha first frad is eftectively invisible
throughaut the second. nested SEQ Let's now fix up Ihe PAR example we saw in an earlier section with
some carrect declaranans: ‘

CHAN OF INT chan3, chand:
PAR
INT fred:
SEQ
chanl ? fred
fred = frad + 1
INT jim:
SEQ
chand ? jim
Jim = jim + 1

Now the channeis chan3 and chan4 are knawn throughout the PAR process: we could legally refer to either
of them in either of the SEQs. On the other hand £rxed and jim are known only withun their respecuve SEQs.

Take care: Specitying 3 vanable v OCCAM does not imitialise its value 1o zera The vaise of a vanable
1S undehned garbage until 1l has been assigned 1o of has inpul a value The value of a vanable only has
meaming dunng the execulion of the process tor which it1s declared Suce tha vanable doesn'| exnst outside
this pracess # makes no sense o ask what 1s s value outside the process. Bul more /mMponantly 11 makes
No sense esther [0 ask wnat 1S (S value once the process has lermnated The next tme that process 1s
executed. (he vanabie sians aul as undelined garbage again You €annot and must Not assume thal if keeps
Ihe vatue wricn il naa at 1he end of the previous execulion For example

WHILE x »= 0 --ILLEGAL' x not declared hare
INT x
SEQ
input 7 x
output ! x

INT x
WHILE x >3 § -- unwise: x 18 garbage here
SEQ
input ? x
ocutput ! x

INT x : .
SEQ ’
x =0
WHILE x >= 0
SEQ
input ? =
output ! x

=- Correct

(WHILE 15 one way that 0CCam uses to repeatedly execute a process; we ll see it in more detail soon).

Hint* If you need 3 vanable to keep s value from one execution of a process to another. declare it in an
outer scope that is, batore 4 process which cortains the procass which is being repeatedly executed

e e

= = o p———— A Lt ey

4 A mrn

4 Fundamentals of occam T

Communicaling processes
Communicatan between paratlel processes 1s the essence of occam programming.

Al ts simplest it requires two processes £xecuting in paralled and a channel jomning them:

INT x :
CHAN OF INT comm :
PAR

comm ! 2

comm ? x

1
This invial program merely outputs the value 2 from one process and inputs #t Into the vanahble x in the
second. lts overall etfect is exactly as Jf we had a single process which assigned 2 10 x.

Shared variables : a warning

Cnmmlumcanon between the component processes of a PAR must only be done using channels. occam
d_oesn t allow us to pass values between parallel pracesses by using a shared vanable.

In fact st a compenent of 2 PAR contains an assignment or input 1o a vanable. then the variable must not be
used at all in any other companent:

INT x, y :
PAR
SEQ
x = 2
... MOre processes
SEQ
Y 1= x. -- ILLEGAL!'

... MOre processes

Keeping vanables local 1o component processes ana using channels lo communicale values s ¢ nght way -
lodon

This may seem Iike a severe restiction to programmers wha have expenence with conventiong languages.
it will cenainly be the biggest source of errors when frs| pregramming i 0CZam

Like all gromtitions .1 will be more €asily borne if the reason for it 15 unders'sad. The reasca s zcth simple
and necessary

Parallel processes run at the sarre yme and n general they run asynchroncusly » @ at ther own pace. only
€oming 10 Synchromsanon with each other briefly when lorced 1o Dy communication gver a cnannel

H 0ccam aliowed one parallel process to read from a vanabie which has its value altered in anomer paraile!
process what value will be read” It depends upon whether or not the other process has aitereg 1 yet, ang
1his canf be known since the processes are asynchrenous, And what i the alenng process chooses [o alter
1:& \;anable's value at the precise momemnt that the second process 1s reaang it? What would the value be
then .

Such a scheme 15 obviously unworkable, hence the prohibion But couldn ! we arganse it so that 3 varabla
warns the other pracess that it has had s value changed? We could indesq., the resulting oorect already
xists in 0CCam and 1s called a channel' Q E.D

Key idea: In 0CCM vanables are used for storing values, white channels are used for communicating
values,

Let's now return to the main track smth a more comphcated example of a PAR which periorms some anthmetic
on 3 value belore passing it on

» 4 Fundamentais of occam

CHAN OF INT comm:
PAR
INT x:
SEQ
input ? x
comnm ! 2 * x
INT y:
SEQ
comm ? ¥y
output | y + 1

Here we have two channels called input and cutput which lsad (o other processes or perhaps to the
outside world We assume that they have been declarel elsewhere wn a larger program. This piece af
program uses two processes working in paraliel one of which multiphes an input value by two. the other adas
one 10 the result ang sends It on its way to the oculput. The tmes-two process and the add-one process
communicale on channel comm

Aside: In case it womes you, this (5 not a particularly usetul thing 1o do: it is purely for dlustration. It would
be much simpler 10 do umes-two and add-cne 1n a single SEQ process. of indeed in 3 single expression, But
later on when we have more of QCCam at our disposal, we shall see how thus sort of thing can be very usaiul
indeed. Al thus earty stage, all examples of communicaung PARS will tend unfartunately to appear thvial.

It's been said several hmes alreatdy that an GCCam channel is a ong-way hnk between a par of processes,
but it 1S uselful to now examing exactly what this imphies. In a communicaung PAR construct i means that:

1) COnly two component processes of the PAR may use any particular channel, one as the sender and the
other as recever.

CHAN OF INT coumm;
PAR
SEQ
comm ' 2
INT y:
SEQ
comm ?
INT z: -~ ILLEGAL' two processes
SEQ -- inputting from sama channel
comm * z

21 The senger process must only cortain guiguls 10 the channel ana :he receiver must gnly contain (npwts
frem the cnannes

CHAN CF INT comm:
PAR
SEQ
coma ! 2
INT y:
SEQ
comm ? y
comm ! y+l
ILLEGAL' input and cutput
-- from the same channel in
== the sama procass

T TR S e ST AT Sy

v i

ansd oo

e . B T . Ut o U U Y

- . . - <. - v .t

e T TP S AP U AT LI

4 Fundamentals of occam |

For two-way communication between two processes we would need two channels:

CHAN OF INT comml, comm2:
PAR
INT x:
SEQ
comml ' 2
comm2 ? x
INT y:
SEQ
comml ? y
comm2 ! 3

The etfect 1s that each pr&cess sends a value t :

0 the other: x ends up with the value 3 and
2. The arder of the inputs and out < ortar: o ungereiang
ey p puts in each SEQ matters very much here and o's important w© ungerstand
I we were to wnte:

CHAN OF INT comml, comm?:

PAR

INT x:

SEQ
comm? ? x
comml ! 2

INT y:

SEQ
commnl ? y
comm2 t 3

then the program would never terminate: we have the dreaded deadlock

Why deaclock? Because both SEQS wail patienity for an input 1o become rezsy Byt SINCE eact s waiting 1o
Ihe QIner 10 output nenher can Qroceed to Mane (ne necessary cutput' It s :ather lihe those co=«al s‘gxagnesr
when twvo peooie oassIng 1IN a narow doarway repeatedly step 10 the same 5cCe 10 make way s ‘epeateql

biccring eacn other Swapping the 1nput and output n erther PIOCLSS resc .25 e deaniock, sealedy

Take care Seguence your programs tg ensure that two paraliel processes are never each s»asng lor a
secuentiatly later cutout trom tne ciker This 15 ire onty CIrCeMSIance i ar -= OCCam requires «. to worry
ADGUl SLCN Maners bul walck oul j0r 11 Lixe Cenam staremates in the oz~ .

e 2ot ch PR
e maners Ga €55, It May 2 Jisgused

Repelilive processes

A]I programming languages prowde some means of looping, 1 8, pertorming an action repeatedly n general
iI's convervent 1o distinguish two kinds of repettian repeat for a specihied numper of limes, or repeat while a
gven conaton holds OCCAM has both types ot repentian The first. or counteg loop we Il see lazer on. The
sectt_)nu conditgnal loop 1s perigrmes by a construction called WHILE, which ncludes a test such as x '< 4]
or fred = 100 The resulting process 1s executed while the test result |

$ true, of
A looked at anciher way,

For gxample;

INT x :
SEQ
x = ¢
WHILE x >= 0
SEQ
inpur ? x .
cutput ! x '

. LT
L0 e i

[PPSR . —

24 4 Fundamentals of accam

will continue 1o read values from channel input and send them to cutput so long as the value 1s not less
than zero. Every ume the inner SEQ process terminates. the WHILE process will be performed again and
the lest repeated. This continues so lgng as the tes! result is TRUE 1@ $0 long as x 15 greater than or equal
lo zero. When a negative value 1s recewed the WHILE process terminates.

Aside The net elfect of this process 15 1o bulter (i.a. store) a single value on ils way from input 1o output.
occam programs are often designed by making the major processes communicale on a channel, then
inserung simple processes Eke this into the channel to butler, filter, or transtorm the transmitted values,
almast as f they wereg slectncal componants rather than programs.

The logical values TRUE and FALSE can be used as consiants in an GCCam program, anywhere (hat a lest
could be used. So: ; | _r,
WHILE TRUE })
INT x :
SEQ
input ? x
output ! x

will continue to read values for aver {or until you pull the plug'}, whereas:

WHILE FALSE
INT x :
SEQ
input ? x
output ! x

is a pantless sort of process which lerminates immedhately and will read no values at all.

Canditional processes

N
In agaitron to repeution, all programming languages need 10 prowde a way lor programs o choose lo da
difterent things accorging 1o a conaition 1 @. the resulls of a test In OCCAM one form of conaitional choice
5 providea by the conslruchion caileo IF.

IF can tane any numper ol processes. each of which has a lest placed before . and make them into a
sngle process Only one of the component processes will actually be execuled. and that will be the Lrst one
{In (Mm@ orger i which II'IE)‘ are wnfen) whose 1es!)s jrue

IF
x =1
chanl ' y
x = 2
chan2 ! y

In ttus tragmeni of program (we assume x. y. chanl and chan2 are declared elsewhere), the value of y
will either De ouipul on chanl of chan2 gepending upon whether the value of x 15 1 or 2.

Thetestsx = landx = 2 are boolean expressions which are used to choose which component of the IF
15 {0 be executed. The component pans of the IF. each composed of a boolean expression ang a process,
are called choicss

What il the vatue of x were 37 Then the IF process woukd cause the program (o stop just as f STOP had
been executed. The program can only proceed i one of tha chaices 15 execuled.

(An IF with no chosces i i just acts ke a STOP. A PAR or SEQ with na compangnt procasses on the other
hang acts uke SKIP i1e. the program contnues as if it were nol there at all).

e o - i

4 Fundamentals of occam

25

In many cases it will not be acceptable to have the program stop il x

;‘t}t‘:st add another choice which will be executed no matter what the valu
UE:

is not erther 1 or 2, In ha! case wa
2 of x. This 15 accompisaeg by using

IF
x =1
chanl ! y
x = 2
chan2 | y ’
TRUE '
chan3 ! y !

Now y will be outpul on chan f x has any other vatue but 1 ar 2. b

ecausé the test i
always true so it will atways be executed by detault if no pravious choic ey (o chos is

€ nas been executed.
It we wanted nothung to happen at all when x was not 1 or 2 we could say; -

- IF
x =1 - ’ '
chanl ! y : -
x = 2
chan2 ! y

This provides one example of the ulil

] ty of SKIP: QCCam requires some
won't allow Just blank space. eq some sont of process after the guard and

A benter way of woling the above is 10 exphcitly state each case as in the foliowing example:

IF
x =1
chanl ! y
x = 2
chanz !
(x <> 1) AND
SKIP

(x <> 2)

Aside This :s a much pener way 10 write congitional procésses as if
and Simphcity in (s luianal we wal, in places connaue 0 use TR
stoud avolo going 50

5 1olally unambiguous For =z~ enience
UE as a cznaiion In rea; STUTTIMS you

To mane more compler thoices, IFs can be nested

Dy using an IF pr n z
constiuct g Process in a choce ol zcmar IF

IF
x =1
chanl ! y .
x = 2)
IF .
y=1
chan2 ! y
TRUE
chanl ! y
TRUE
. SKIp

In this process. chan3 is used lor the cutput if x 1 2 and y has any other value than 1.

L.

26 - 4 Fundamentals of occam

- Selection processes

Like many other programming languages OCCam prowdes a turther means of making a choice depending
upon tha value of a vanable. Such a construction 15 called a selection in OCCAM and prowdes an efficient
means of setecung one of a number of opions in 3 CASE.

CASE can take any number of pracesses, each of which has a kst of one or more expressions placed before
1, and combines them inio a single process. Only one of the component processes wilk actually be execuled,
and that will be the frst one (again, i the ordar in which they are wntien) with an expression which has the
same value as the selecting vanable:

CASE x L
1)

2

In thus fragment of program (wihich :s similar to the trst example used to descnibe IF), the value of y will esther
be outpul on chanl or chan2 depending upon whethers the value of x is 1 or 2. Typwcally, the constants
used in a CASE will be named. and also there can be mora than one case expression’:

CASE x
i, .
chanl ! y
chan2 ! y

In this program fragment each constani expression has been given 3 name: 4, 3 and k. The value of y wilt
be oulput on chanl i x has the same value as i of 3, and wil be output on chan2 It x has he same
value as k

Whar if the vaiue al x was none of these values? Then the process would cause Ihe program 10 Stop Jusl as
STOP had been execuled The program can only proceed if one of the oplions s execuléd just as an IF
may only proceed ¢ a choce 15 execuled.

Onca again {as we saw with IF). in many cases it wil not be acceptable to have Ihe prog-am stop f x
goes not have the same value as one ol the case expressiens We must.ihen add a turther ophon which wil
-@xeculé NO Mater wnat the value of x, This 1 accomphsnea by using ELSE.

CASE x
L |
chanl ! y
k
chan2 ' y
ELSE
chan3 ! y

Now y will be output on chan3 # x has any value other than i. § or k.

The component pans of the CASE. each composed cf an expression and a process. are calied ophons.

Alternative processes

tn OCCAM, chowce has an exira dimension lacking In ordinary programming languages We have |ust seen
how to make choces accarding to the valuas of congitional @xpressions i a pregram using IF. and how 1o
select an oplion according to the value of a vanable, Howaver we can also make choices accoraing to Lhe
state of cranaeis. This is made possibie by the ALT consirucuon, wigse name 15 shom for aigrnaton

Line IF ALT ,ns together any number ol components inio a singte construcnon, but the component pars
of an ALT. caied drernanves are rather more co.npecated than LE choices

B e L et Sn 2R R R mal e e ;'!‘"J ST T ‘"wﬁ by
H - - Ve el Lt T e TR
- . o) L A e TH

e i AR e s e+ = —— .+ o i i e b M B e L et emet e ek e chi s s e i D 4 s b e e D s

4 Fundamentals of occam

- . P "r"

P P S SN

¢

27

The simplest kind of ALT has as each allernative an 1

put process kollowed by a proces: ecut
The ALT watches all the input pracesses and execules the process assoc:atedb:um?he lirssl n?;::e tgzaco;d'
ready Thus ALT 1s basically a hrst-past-the-post race between a group of channels, with orwy the wmnar‘:

process being executed:

CHAN OF INT chanl,
INT x:
ALT
chanl ? =
...first process

chan2, chan3 ;

chan2 ? x !

...second process
chan3 ? x
...third process

if chan2 were the first to produce an mput, then only the second process would be executed

Here choice 1s being decided in the tme dimension, the Inpuls causing the program to wart urmd oné of them

is ready

An a'nernatlve may start with a test in addition 1o an iny i
pul. just ke the tests n an IF. Il thes s done. the
associated process can only be chosen of its input 1 the hirst to be ready and the test 15 TROE. océam

makes this easy (o remember by using the & sign, as in:

CHAN OF INT chanl, chan2, chan3 :
INT x:
ALT
{¥ < 0) & chanl ? x
-..firat proceas
{y = 0) & chan2 ? x
...second proceas
(y > 0) & chan3 ? x
...third process

if ¥ 5. say 3 ano chand s the hrst 10 be ready then the thed crocess will be executed s form of
alternative 15 Most cfen used to IMpase Lmus on s0Me pracess. Dy using a lest such as (voltage <

maximum).

As with TF ALT benaves hke STOP if there are no alternatives Aiso ke IF, an ALT can =2 nested as

nsae an guter ALT

The ALT is an extremety powertul cORsiruckon | allows complex neworks ol channels 1o be =erged and

swilched 1n a simple and elegant way .

Because of this power. and because it IS unhke anythung mn

. cenvennanal programming fang.ages. ALT i
far-ang-away the most dficult of the 0CCamMm construclions 1o expian and to understgnd gF:r_'.-n'aleiy w:
have now seen enough of OCCAM tu be able 10 work througn SOMe More senous examples, wmch should

ctanty its usage.

A simple controller program

Ler's suppose that we are designing a program 10 contrel a portatie music centre. Like so mary modem

apphances it has digital controls rather than rotating knobs

To control the sound volume, there are two buttons, marked louder and softer. Prassing louder nareases the

volume one noich. and hkewse pressing softer reduces it.

We have two OCCamM channets. also called louder and softer which produce an INput whencwer a burlan
15 pressed. and a third channel called amplifier which transmits a value 10 the ampiher secoon where a
contral cHip sets the valume 1o that value.

[N

A e b K g L a tmmemmba e e R a4 eevae W o e

28 4 Fundamentais of occam

The processes which increase or decrease the volume value are easily written (we’ll leave declaratons untl
we hava a complete program): .

SEQ
volume = volume + 1
amplafier ! volume

ang

SEQ
volumea = volume -~ 1
amplifier ! volume \ P
Now the program needs 10 decide which button was pressed mast recently, ana hence which acton to take.
Combining the two processas in an ALT will achieve this:

ALT
louder ? any
...increase voluma
softer ? any
...decreass volume

The actual value sent by the button press is not impertant. so we |l declare a vanable called any |ust to
dispose of the input value. As things stang this process will only operale ance, on the first bunon press. and
then terrminate. It needs 1o ba conunually repeated to scan the buttons.

The tll program would look ke this:

INT voluma,
SEQ
volume = 0
amplifier !
WHILE TRUE
ALT
louder ? any
SEQ
volume
amplifier !
softer ? any
SEQ
volume .= volume - 1
amplifier ' volume

any :

volure

‘= volume + 1
volume

Natice (Rat vo lume 15 imbally set 19 9 so thal the volume siarls off low rather than at just any rarccm vaiue

This program does the job. but ysing WHILE_TRUE means that i1 can never end, when Ihe music centre
15 swiiched oft the program will just “die” wherever It happens to be al the hme Geog programmers dont
like that sort of messy ending so let s acd another channer which reads the OFF putton {cathil of£) and a

L T

T e e e e iy~ - T Y) ——pa YT

pr e Aee b WA e i G mmy A tme M emesm L RA et E ae A B N4 o e s e -~ e woaas A ee ama .

——

4 Fundamentals of cccam

vanable called active, which is TRUE so long as the mus:c centre 1s switched on;

BOOL active:

INT volume, any :
SEQ
active := TRUE
volume := 0

amplifier ! velume
WHILE active
ALT
louder ? any
SEQ o
volume := volume + 1
amplifier ' wvolume
=ofter ? any
SEQ
volume := volume - 1
amplifier ! volume
off ? any B
active := FALSE

This now terminates tidily when the OFF button 1s pressed.

Aside" For convenience and simpiicity in this tutonal we will cantinue to use WHILE TROUE from tme to trme.
In reat programs you should avoid doing so. taking good care 16 ensure corfect termination.

As a lurther relinement we can add tests to the voalume WIcrease and decrease processes to mit the values
10 the range which the conirgl chip can accep (let1s $ay the range s Irom § 1o 100 unns)

We could merely aad the tests volume < 100 and volume > 0 As a maner of good crogramming
sfy'@ tNaugh 11 wowid De benler to detne he hmils as nameg consianis at the peqinning of the .::grarn if
the vaiues ever have 10 oe CRANgea (Say a new control chip 15 introduceds [hen you wil onty nave 1o change
Inem :n one place rainer than searching the whale PIOGrAm 1o Lna Jul everywnere ihey have been used,

The final program 100ks ke g

VAL maxaimum IS 100

VAL miniaum IS O
BOOL act:ve :
INT volume. any
SEQ
active ;= TRUE
volume .= minimum

amplifier ' volume
WHILE active
ALT -
{volume < maximum} & louder ? any
SEQ
volume := volume + 1
amplifier ! volume
{volume > minimum) & softer ? any
SEQ
volume := volume - 1
amplifier ! volume
off ? any
active := FALSE
The use of named constants can also make a program mare reacabie than o it were strewn with unexplained
numbers,

i e B e e e B e R e L L IE ST TP J R i
. 8 Lt . - o .. - G- s . N o~

TR T ey

-3y

A e e B e b el S 1ok % et B dkein = 4 Ak ne o Wt e P

30 . . 4 Fundamentals of occam

Two paints anse from this program;

1 Notce that we have not declared the channels louder, softer. off and amplifier. That's
because they connect 1o the haraware rather than to other OCCAM processes. ultmately they rep-
resent physical bis of wire connected 10 a burion Later on we ll see how o connect channels to
hardware in occam.

2 In a real control program there might be many other thungs tor the program 10 do besides reading
the volume buttons. for example auto-search for selected lunes on a tape. Processes 10 do these
tasks could be combined with the above program using a PAR in place of the main SEQ so they all
praceed at the same uma. Lo,

(I !

Arithmelic in occam

So far we have nal discussed what anthmetic operations ara avalable in QCCam, though we have 1aken for
grantea that i has agadiion, subtracuon and muliphcation.

The basic anthmetc cperations are these:

x + y --addytox

x = y =-- subtract y from x

x * y == multiply x by ¥

x / y -- quotient when x ia divided by y
x REM y == remainder when x is divided by y

These coeratians can be perlormed on numbers of type INT or REAL. {see the Formal Defistion for precise
delais ot how remaingers. overtiow and other such matlers are treated)

All ogerators have the same prionty in QCCAM so parentheses must be used in compléx expreéssions 10
encigse comoonent goeranons ang allow them 1o be lrealed as single operands. This also esiabishes the
orger ¢t evawaion For example

answer 45

answer 29
answer 19

(2+43) % (4+5) --
2+{3"(4+5)) -
(2+(3%4))+5

2+3%44+5 == illegal
The teeis dre 350 0DErAIONS 1N IS seNse and SO parentheses will be needed 10 Jvoud INCOIrECt inlernre1alion
For vagze

tred = (2+71m) -=- legal expression

lagal expression
illegal expressicn
illegal expression
(mixed typeas)

(fred+jane) > jim ~--
fred+jane > jim
freds (Jana > Jim)

For integers. oniy thare 15 3 further set of modulo anthmetc operators Madulo anthmetc. tor those who have
not encountered it belore, deals with number systems where these 1s @ imited range of numbers. Ordinanly
we preter 10 think of numbers as going on tarever; 5o that there 15 always one bigger than any number you

can hink, of,

As an example. {unsigned) anthmetc modulo B only allows the numbers 0 1o 7 to be wsed - the result of
aooing 10 715 zerg again. So (5 + 7) moduio 8 15 4. An everyday example of modulo anthmetic 15 the
anthmenc ol cicox times (Modulo 12 or 24 walth No zero); adding 3 hours to 11 o'clock gives 2 G'cock. not 14

o'cloch.

Modulo anthmeie 1§ impartant in computers because thay atways work with numbers that are hmited Dy the
size ©F —emory L4sec (o store them For exampie the largest signed Aumber that can be represented by a
16 ot 1T .5 32.7E°.

. v

D T T L T .

- T e e —_ -

7

e '{:,"hﬂ-"_ :“. - !‘F‘ “'_.F .-:\1?; e

4 Fundamentals of occam i k)]

OCCam has the operators PLUS, MINUS and TIMES lor additon
2**{number of bits 1 an INT). + subtracton and multgleavon modulo

For boolean truth values, 0CCAM has the operators AND, OR and NOT which are defined by-

NOT FALSE = TRUE NOT TRUE = FALSE
FALSE AND x = FALSE TRUE AND x = x
FALSE OR x = x TRUE OR x = TRUE

where x 15 any boolean value i.¢ either TRUE or FALSE.

Type conversions
Sometmes It's convenigent 1o conver! one type o another in a . ance
program: it may for inst
1o declare several exva vanables for a value that 1s only required once Type gorwersron shcns.j:‘zerl ?1‘223
sparingly as the whoie point of types 1s to prevent values being used i inappropnale situations.
I aumber has been declared as INT and digit as BYTE. we could stil add them together Lke this:
number := (number * 10) + (INT diqgit)

The reversa conversian, of INT to BYTE is only legal if the value s within
. the BYTE range of 0
exampie, 10 culput a number between 0 and 9 as a character we could wnte 9 0 255, Fer

cutput ! BYTE (number + (INT ‘0Q’))

Values' of type BOOL can be converted to type INT or BYTE and wce versa, using the following cehnitions;

INT TRUE or BYTE TRUE 151

INT FALSE or BYTE FALSE 50
BOCL 1 s TRUE
BOQL 0 15 FALSE

50 i the value of active s FALSE. INT active 150

Bit operators

To aliow low level coeralicns on the ndradual bits in a value OCCa

M provides bitwise operalors ~ (bitwise
notl, /\ [bitwise ardl. \/ (bitwise or) ang >< bitwise exclusive-or) plus the leh ang nght sruft cpefaims <<
and >> These operalors work anly on inieger values.

Aside Therg isnt space here 19 explain the effect of these operatars. which requires knowtedge of bina
anihmelc It you are not alieady lamihar with binary anthmetic, any GoOod INraductory compuiing Dook [e;Y
A Osberne s "An Infroduction to Microcamputers - Vol 0%} will explan t But Jf you don't understand therﬁ
alreaay. you probanty don 1 need them. .

Numenc canstants can be entered in haxadecimal notation by preceding them with the # sign:
#FE (equivalent 10 254 decmal)
This covers 0CCam anthmetic in more than enough depth to follow all the examples in trus tulonal. Readers

;h? are greally concerned with numencal calcutatons should study the full details presenied in the Formal
etnition.

. f,"‘l... 14 _',";_:?""':': R i, _- A, - ',: "'-’:'_‘-"-"[_‘-

.

e

b

— i s A ea s A et e ans o ol e e o

Lo

L P —— —— e e e - .

tr . - . -
. o AL e pnn

A2) 4 Fundamentals of occam

Abbreviations

The notation we saw earher for naming constants (e . VAL maximum IS 1000} s nothung but a particular
lorm ot a more powertul and general device called an abbreviation.

Abbrewations can be used 1 gve @ name 1o any.axpressuon in occam, providing a form of universal
shorthand. For example:

VAL oxp IS ((x + y) / (fred * 128}) :

delines exp to be an abbraviaton for tha value of the complex expressian on the right. The iact that this
specification ends with a colon tells us that abbreviations arq local, ke gther OCCaM objects, and therr scope
is the folowing process. '

An expression abbrewiabon may, as above, contain vanables on its nght-hand side, but these vanavtles must
temain constant throughout the scope of the abbreviation, and the compiler will report an error it any of
the vanables are changed (by assignmant of input). As @ result, an axpression abbreviaton behaves ke a
constant throughoul Its scope. . - . ’ :

The full form ol an expression abbrewiation includes a type balore the name:

VAL INT axp IS5 {(x + y) / (fred * 128}) :

but this can atways ba omitted as OCCan can deduce the typa fram the types of tha values on the nght hand
side. Programmers may nevertheless wish lo somebmaes inciude a type specfier as a reminder of the type
of a comphcated expression. -

0CCam assumes that numbers below 256 are INTs uniass told otherwisa. which can be eone.

VAL Eac IS5 27 (BYTE] :

We shall see later on in Chapter 5 thal abbreviakions can also Deé used 1o name arrays and paris of arrays

Procedures

A proceduse 1S a process with 3 name. and this name can be useg 10 represent the procedare in Qther
processes 10 dehng a procedure, the keyword PROC and a name s 1alicweg by a process whicn is called
the procequre DOOY

1

The body of a procedure 1$ executed whenever s name 15 tound in 3 program, such an accurrence of the
name .5 cailed an /nstance of the procedure

a e e own
FER ..
B N -

.- = TR TR T, Y T WWT. r
I e y—y T “ ﬁ,- I B ““?_-'TSM:W

- ——.——— ——— At ———— o

LR an

4 Fundamenials of occam 1

A procedure definitbon lochs like this.

PROC delay () -= procedure heading
VAL interval IS 1000 : --
INT n : -
SEQ «- procedure body

n := interval -
WHILE n > O -

n:=n -1 --

INT y: -- main process !
"SEQ ' == starts here

inputl ? y

delay {} == jinstance

outputl ! y -

delay () -- instance

input2 ? y

delay () -- instance

output? ' y

All ttus procedure does is to count downwards from 1000 1o 0, $0 1t could be used as a crude way of ntroducing
a nme delay into a program (the proper way 10 introduce a delay in occam, using imers, will be mtroduced
later in Chapter 9) The empty parentheses atter delay () show that thus procedure takes no parameters;
we (| discuss parameters a hitle further on.)

Note that like all specfications this 13 aftached by a calon 1o the following process. This fells us that the
pracedure name abeys the same scope ruies as vanable and ciher names - the procedure 1S only known
throughout the process which immediately follows. 10 whsch 11 1s linked by the colon. 0CCam puUTs the coton
which ends a procedure definiion on a new line, as above 1o mark clearty the end of the ooagy The colon
must appear direclly beiow the “P™ in PROC,

Exacunon of this program beqins at the main process: it reads values Irom two input channels . zssumed (o
be ceclarea glsewnere). 3nd s aeiayed 1or 3 while betore sencing them fo the culoul channaeis Wrenever an
nstance of celay 1§ encountered. it s executed exactly as if the body of the procedure had been s oshtuled
for the name ke this

INT y s
SEQ
ioputl 7y .
VAL interval IS 1000
INT n
SEQ
n '= interval
WHILE n > 0

n:=n -1
outputl ! y
VAL interval IS 1000 :
INT n :

SEQ
n = interval
WHILE n >
n:=n -1
input2 ? y
VAL interval IS 1000 :
INT n:
SEQ
n :w interval
WHILE n > 0
n:=n -1
output2 ' y

et R 1 T Y Ta o Y e AR .

W e e

e At Eh o s b a e m s h et e - Yt e R b e il M e o Al @

u 4 Fundamentals ol occam

PROC thus provides us with a sharthand; the name delay is not only much shorter than the cade it replaces,
but here 1t replaces this code three umes over. So the main process becomes much more ¢compact. and
more readable too since the name dalay gves us an idea of what It does.

Technicat Note. A procedure can always be compiled either by substitubng its body as above, or as a closed
subrouting,

Ttus 1s by no means the only benafil bestowed by procedures though They previde a way of desigring betier
structured programs By breaking down a program design nto he smaliest parts which stll make sense
(called “factonsing” the prodlem). and then wr}nng' m?e pans as proceduras, the logic of the whale program
is made clearer and easier 10 follow oo

Often such procedures will be used more than ance, hence reducing the size of the program, and some may
be sutticently general-purpose lo be used again i other piograms.

Sensibly factonsed programs are easier 10 moditly, debug and mainiain hecause by moditying a single pro-
cedurs declaraton, the changes are auwtomaucally effacted everywhera in the program thal procedure 15
used. -0

Hint. There 1sn't space in this lutonal to cover the subject of structured programming and “top-down” design
techrigues in proper detal. Readers who are not tamihar with these techruiques are relerred 1o the nUMerous

PO R S S S PRI, RSP TR PR S U e

e - . - L - - T

.5

4 Fundamentals of occam

35

When the procedure body is substtuted for an instance of 1

the procedure name
parameter name becomes an abbreviaticn for a value called 1hepactual paramete;.n I?: ?r::cae:;emm 10m|13|
the aclual parameters are 1000. 2000 and 500. In the fust case 1nterval decomes an abt;.r;?r::ﬁ;r;

for 1000 throughout the procedure body 50 dal
i v roc y ay (1000) has exactly 1he same etleq? as our onginal

ﬁ procedu;_?1 can have any number of formal parameters. which must be separated by commas in the definitran
eading, e actual parameters of an inslance are sim:darly sepasated by commas One actual parameter

must be suppled for eacht format parameter, and the
Matnon i st formal oe.): y cofrespond by pasiton {the fust actual parameter

PROC box.volume (VAL INT length, breadth, daptiﬁ)
... body -~ definition

box_volume (24, 16, 20) -~ instance

Procedures with parameters prowvde a still more powertul shorth oced
and, tor now we can
in diferent places with diffecent nternal values. In the above program for Instance ﬂ::es;hc::gm; wilt l:.sra:

. twice as lang as the first and the third will last haif as long

We ara not imited to calling delay with constants ke 1000 as th varab
e actual
INT coukd be used as an actual paramater e.g. delay (x}. parameter. Any le of type

Y books on the subject. of which a recommended éxample is “Suwuctured Programming” by Dani, Dijkstra and .
Hoare. !
'
1 - .
: Occam parameter passing convention
" . +
3 Parameters
.J i :: o‘ccam. when a vanable s passed as an actudl parameler 10 a procedure. 1t is as if the vanatie replaces
Procedures can be mage more uselul st by introducing parameters. which allow different values to e ! e °'|ma’ parameter throughaut the procedure. Anything that is dane fo (he lormal parameter. s oane 1o the
passed to diterent instances ol a procegure ! vanable, which may theretore have is value changed
In the Geray example 2oove The length of deiay i tixed as 1000 n the texl of 15 deknition ity I aptrevianon Take this exampie.
VAL interval IS 1000)ang d can ey be changed Dy egiing tha progfram A more niexole way woutd PROC
be 10 pass ihe deiay lengin as a parameter o decrrmant (INT number)
umber !5 number - 1
PROC delay (VAL INT interval) :
INT n It we use decrement (x) a
$ annsiance ol the procedure, the value of
s:g 1= ipterval decrement (x) lerminates x wil be reduced =y one when
WHI: >
HIE R A | Takecare Thisbenaviour differs irem thal found i certan olfier widely used languages The cor=only used
) : cail by-value convenhion (avaitanie i C and Pascald has the ettect ol evaluating the vananle (actua carameter
iN‘I‘ . - main process and using the resuil as the niial value of the lormal parameter, which benaves as a locai varaole of the
I Yy D oA prbees : l_ln_:acedure pooy Consequently. an assgnment to Ihe formal parameter has no eflect on the actua: carameler
inputl ? y H e OCCaMm convention 1s more nearly eguivalent to Pascals call-by-relerence (0r VAR) parameters ThIS.
delay tiODOl i paint 15 emphasised because i1 Mmay (NP up programmers who are experienced In these other tanguages.
cutputl ! y ' Sometimes it)s preferable that a
. procedure should not att
! delay (2000) We have aifeady seem haw o aeh n er the mlt:ue of a vanable passed (o it as a parameter.
: input2 ? ¥ ' local 4 acreve this in our delay example: decant the value of the parameter nio a
i del (.500) . | variable (n i the example} and do any manipulations on this local valua. Use this mathod 4 you need
: o“csztz vy ; 1o translate Pascal procedures of imildr wilh valu@ paramelers. into OCCAMm.
. i It onil
The name intarval inthe definmon of delay s cailed a lormai parametar Formal parameters may be of moasgg':mog:g'gﬂf::e!z' a vanable ': needed in a procedure. 1 @ |l the lormal parameter 15 never allared
: any type. inchucing CEAN. and a type specification 15 compulsory n the procedure heaaing OCCAM cannot . put, then a more effiient program may resull ¢ we explicitly say that only the value 15 to
i read your mnd, SO i €ANNGE work out wnat type a tormal parameter 15 meant 1o ba if you gont tell 1. {in an .
i abbrewaton speciicabon on the olher hand, 0CCAM has an example value 1o fook al. and so will atways be
' able 10 deduce Hs ype). i
A tormal parameler Dehaves ke an aboreviauon attached 10 the procedure body {in fact here it has replaced |
: the abbievianon VAL intexval IS 1000). s
._' : .
! .
T 1
R 1
\

L ¢ .
i ol sl Al o S

oy ety T TR G T 2 T W ey g:”?""“ et
e afalh AL o . T T Y E W?""—ﬁ’.“”‘?‘f
. ST R T e e e v

_ s 2

A S L ¥ * o X gl o

. . RO : SR R £
LIRS DMK]

-

' 5 -, -

- P A N L L

———— g L

AR e

e mame s

6 4 Fundamentals of occam

ba passed, using VAL:

PROC delay (VAL INT limat)
INT n :
SEQ
n =0
WHILE o < limit
n=n+1

Py
When VAL is used Ike lus. the formal parametes can bE thought of as representing a constant throughout the
pracedure body, and the compiler (atter checlung that it's rue} may explont the fact 1o produce mare efficient
code.

The volume controller program we developed in the last section could be rewntten using a procedure:
VAL step.up IS 1 :

VAL step.down IS -1 :
BOOL active :

INT wvoluma, any @
PROC change.volume (VAL INT step}
SEQ
volume := volume + step

amplifier ! volume
SEQ
volume :w 0
aplifiar ! voluma
active = TRUE
WHILE active
ALT
louder ? any
- chango.volume (atep.up}
softer ? any
change.volume {atep.down)
off ? any

active ;= FALSE

Notce thal a single procedure Now Serves both 10 Increase ang cecrease the volume

Argther point 10 note 15 that this PROC body uses the vanadle volume even {hough that .anacle s Not
geciafed in the PROC. mither as a local vanaole or a larmak paramerer. This 15 quiie accepiaoie to QCCam.
voluma is called a free vanable with respect 1o PROC change. voluma and has ihe uselui property of
being abia 1o retain s value trom one call of the procedure 10 the next. which 1S precisely why 1115 used here
Note that voluma must be gectared somewnere betore the PROC dehmion, otheswise OCCAM would reject
it as an whdeclared name.

A vanable is Iree with respect 10 a procedure when the procedure s dehned inside the scope of the vanable

Functions

Mast convenbonal languages suppon functons. Bnelly. a functon 1s @ process which returns a value and
thus may be used n expressions. Many functions arg mathematcal, and return such things as the sine
ana cosine of thewr arguement. There 1S a big difference between the type of functons matnemalncans know
and love. and funchons as known by mMost programmers (which are nowhere near as ustworthy}. occam

prowgas the more trusiworthy lund of function.

In OCCAM a funchon Jves A name 10 a special kind ot process which relurms a rasuft called a value Drocess.
OCCAM tunct ons have the agvantage of buing side etec: free. Pracocaiv, this maans that OCCAM (1§ very
sinc: anout Pow ou construct funcuons. The greal aovantage ot Tus however. 15 thal wnen you use a

e T T WP, G AT N T T A P B T O P PR T W Y. ST
. iR L e T T e - NS

& :
TR L T

4 Fundamentals of occam 537

tunction you can guarantae i will have no eflect upan any other pan of your program Many of the bugs

which mystenously appear in programs written in other lan
he £ams suaamcs guages are due 1o the tact that you cannot make

Function definibons take the general form:

fype FUNCTICN name ({ , formal parameter })
specificaton :
VALOF !
process
RESULT expression

And. for example. a lunctian wiich returns the value of the targest of wo integers would look kka tus:

INT FUNCTION max (VAL INT a, b)
INT answer:

VALOF N
IF)
a>b
anawer !o™ a
b>a
anawer := b
a=pb

answer = a
RESULT answer

~— ¢could in fact be either value

Notce that a type specifier precedes the keyword FUNCTION This s i
i
the vaiue returmed by the luncnen S 13 moonant 25 |t speches e typa of

The tormal parameters ot a funcuon can only Ge vialue (VAL parameters PARallel ang ALTBP~auon con-

SUUCIS £anng! Ce used wiiin e luncton Also input ana ouwtgul Must NG e used within the “_~cron You

:an anly ass%ﬂ 13 vanables geclared within the scone of the tunchion, “e2 vanaoles” can be -ead but not
5519neg 10 Only pracedures cehned withwn Ihe scope o! the tungbion ang zzner

Sssines G aZnenng (o the apove nuies may

A luncton retu:ns a value ang s gehined as an operand s IUACIONS Can ZTCear where-ever an eroression
would appear Using cur funct.an 10 fefurn the maximum of tap values In 5~ assignment lor exz~pie

x ‘= max {a, b) .
Qrn an expression (0 gain fwice the Maximum vatue
x := max (a, b) = 2

1 ¥ Q 4
Functions share many of the agvantages of procegures and extel d the lac-ﬂf 10 factonse programs wr
I) ProgG: + itten

Hint There 1snt space n this tutonal 1o go into functons o any great deph of 10 covar i Mmany ssues
g\vv?x’;e‘% SA full descnption of lunctiens i OCCAM can be found in the 0CCAM 2 Reference manual published

T ':"-': TR T T TR

<

6

Programacion de Procesos
Paralelos

3 Getting started

This chapter coniains a tutonal that shows you how te compile, link, and run a
simple example program on a single processor.

A morg comglex programming axampla, illusirating separata compilation, can be
found in chagier 4, lo,e'her with a detaled description of program development
for singls transputers. Whila chapler 5 prowdes a descnpnon and examples of
multiiransputer picgramming. - -

Tre tutorial, given in this chapter, assumes that you have a boot fram link board
conlaining a (MS T400, T414 or T425 processor. If you have a board fited with
any other transputer you must compie and link the program for that transpuier
type, see secion 3.3.6. The tutorial also assumes that cenain environment
vanaples have been set up. These are introduced in sections 2.10.3 and 2.10.4

ard a descripticn of how lo set lhem up :s gwen in the delwery manual supplled
with this procu -

. If you do not have a transputer board use tha T425 simulator tool isim to run

the application program, see secuen 3.1.5.

3.1 Example command line

nare necosiivy, ke examplo comond lines are duzueliod far dlierent hest
sars.ons of U3 iscicel; tne "=’ SaZh ChAraCigr 1S usdd in command LRes lor.
UNIK baseq 2285

and the '/ characier 1s Lsed n commancs lor MS-CCS
SGS, Wr'en recrzoucing tha axamples you should use the

iar your notosystem.

1{;

and VLIS bazza ool
acorepnale ccmmane
3.2 Interrupting programs
T mrarmizton o zooioat znorogram wndae abis sl rupning, precs the host svsiem
EREAK ‘ne, '3 marLIl t2 server. Sca the celivery mancd, secuon ‘Server
Interrupts” lor funther catans.
When the BREAK key is pressed the following prompt 1s disgiayed:

(x)exit, {a}hell, ¢r (c)ontinue?

Ta abort the pregram type ‘x’ or press fAETC-] This lermunates the host file
server.

To susgend ihe program so that you can resumae it later, type *a’

'72TDS 27502 - ' - : March 1991

. 3 Getting started

To abort the interupt and continue running the program, typs ‘e’

3.3 éompiiing and running a simple example program

The example program sirmple.ccc reads a name from the keyboard and dis-
plays a greeting on the screen. The scurce of the pregram can te found in the

tcoiset examples direciary. The program uses the Ubrary hostio.lib and
incorperates the include fie hostio.inc. .

The program is iustrated below. l

#INCLUDE “hostio.ing” -- contains SP protocol
PRCOC simple (CHAN OF sSP f3, ts, [)JINT memory)
BUSE "hostie.lib® -- ijserver libraries .

{]BYTE buffar RETYPES memory !

-

BYTE result:

INT length:

sEQ R
so.write.string (£a, t=,

. "Please tyze your nazme :")

so.read.echo.line

(s, ts3, leng=h, buffer,
fosuly)
20.write.nl (£3, s
10.write.stris (3, ta, "Hello "}
30.write.atring.nl (fa, ta,
[buffer FRACZY 0 FCR length)])
30.exit (£3, ta, apa.succeas)

~2 sl ling i the grogeom 'oa7s 1he tie hostio.ine, Ths!'e containg the
e

e bon of protcec! S, Used 1o communicala wih ing hesi Lie server, ard a
“mZer of cznsianls that 22 vsedin ConuncLIn with iha hest 2o lerary

10 -

Tke prozedure simple s then ceclared. Al ihe werking coce is contained
velhin s procegqure. Singie precessor programs must always use a similar
garameter hst,

The servertibrary hostie. Libis referenceg Ey the RUSE sirective. This ibrary
Soians Al the procedures used by the pregram. See pan 2, secuon 1.4 for
descriptions of the roultnes.

72 TOS 27502 March 1991

—

)

3.3 lComleng and running a simple example program 33

Before the body of tha procedurs a number of vanztles are declared. First, the
memory array is retyped as a BYTE array. This enzoles the program 13 use the
free mermary on the beard as a charactar butfer. -

The variables length and result are then dec'zred lor use by the Frogram.
The vanable length refers to the numoer of chaszziers in the name mad lrgm
the keyboard, and result is used by the librery reutine 1o indiczie whether
or not the read was successiul. The result is ignzred by this exams 2 ‘or the

sake of simplicity; it is assumed that screen wnigt and keyboard reacs aiways

succeed.

The working code is contained within a SEQ. inc.calrg that the statemz=:s which
follow are to be executed sequenvally. All of the s:z:aments are cals - library
routines in hostio.lib. The code prompts for a name, reads the na=te from
the keyboard, and types a gréeting on the screen. .

The last statement calls a library precedure which ierminates the server, retyming
control ta the hest operatng sysiem. Without this s'zi2ment the program would
finish and appear 10 hang, and the server would have to be lerminatea explictly
by interrupting the program. - . - :

3.3.1 Setting environment variables

Canain emaronment vanacles rust be set up cras ¢

arentrzz.cec nsocions 2103250 2,104 ano s roiicnofhow sz z2iimem
LR is G EN N 1hE Cehvery manua sLophed wih =5 rzoudl, For exa—- . the
csmpiat sn will 1) with @ mesezra IFQ.CAWNG RQl nzstio.ing *I3 o szen
isung, shoud e envivanment vanoo'e ISSARCE ro @ Selup corizzy.

3.3.2 Ccompiing the examcle zregram -

M SITIe e £USTrI M N Us samest 0T e weh atl dalol 15 samled
-
!

W SR COmTand hne shso 2 a2 useaq:
cc saimple

Becausa the file has the default extension of . oce ¥V CEN orulat when veaing
the comg.ler,

The comoiler will create a file called simple. teo, coriaining the coce =<msiled
‘or a T414 in HALT mode. The compiier wall perziT iTe necessary 5yrtiEx, 2125
and uszge crecks and will insen ¢cae to perform rin-ima eror chec r3. By
delault the compider enables interactive debugging with idebug,

72 TS 275 02 Marcn 1691

e T i Gt s ———— o i o b

24 : - 3 Gelling started

3.3.3 Lnking the example program ..

To usa the result of your compilation it must be linked with the fibranes that it
uses,

To link the program type:

ilink simple.teo hostio.lib -f occama.lnk {UNIX}
ilink simple.tco hostio.lib /f occama.lnk {(h1S-DOSVMS)
. |- .

The linked program will ba written to the fle aimple.lxu. As no output filg
is speciied, the fie is named aftar the input file and the delau!t link extensicn
. 1Xku is acded.

'

The hbrary hostio.1ib is the server library used by this program.

The ‘£ option specifies a linker indirect file containing commands and directives
to ilirk. Three incirect files are supplied to suppon different ransputer tyges.
They are occam2.1nk, occama. Ink and occamB . 1nk; they are descnbed
in-chagter 19, These fdes identify vangus libranes including compiler hibranes
which ara required to be linked with the pregram, These files are provicded as a
short-hand meihod of specitying such hbranes 10 tha linker.

Tha tie cczama. Lok is the comect file to use for T4 senes iranspuiers.

Hcte: Ia mure comoiex pregrams, Lbranes may bo deperceant on otter fles
ano Ltrzses, To erture af neceosary horancs &9 inked inio a crzgram, the
imakef ool may te vsed with @ su.iatie MAKE oisgram. (See Lelow).

.

334 Creating a beatable tile -

TreTam LIS T rnmutite mate tociol'e Trsmven et SIIrg
] TS0 T2 MORE INe LICITEM LTIz @ and Is Zoneved Long ha
colecse zcl icellect. Cro cf the (Sicwing commancs shoud Se useq ce-
Fenc.rg on the type ¢! heost in usae.

icollect sizple.lku -t (UHIX)
icollect sizplae.lku /t (MS-DOSVMS)

By detaut icollect excects the incul Me 10 have been procuced by the con-
figurer. Tecause the example pregram s ¢oing 16 run ON a SiNGa precesscr
there 1s no need 10 configure (L The 't” oplion instrucis the ccilecior 1o build a
bociatle hle from a linked unit. The booable pregram will be wetten (o the fite
sizple.btl.

72 TDS 275 02 March 1991

Pt

e e e e e e

3.3 Compiling and running a slmple examgle program 35

icollect will also creats a configuration binary fZg as a~ by-produc: of creating -
the bootstrap. Configuration binary files deszsia the network cocniguraiion, in
this case a singla transputer. This file will have the extensien .cb and is
created by icollect for use by the debugger. For muitilranspiier programs

the configurer is used to create configuration birzry files.

" Chapter 12 gives more information on the ceileczr toal.

3.3.5 Running the example program

To run the pregram it must be loaded onlo a trznssuter board us'—:; the hos:ﬂ
file server tocl iserver. To load and run the pregram usa one of ina lollawing

commands:

iserver ~se ~sb simple.btl T {UNIX)
iserver /se /sb simple.btl T (MSO3WVMS)

The ‘sb’ ection specifies the fla to ba booted arnd loads the progrzsi onto the
transputer board. It has the etlect of resetting the toard, opening comeTunication
with the host, ard loading the program onto the neswork. The ‘se’ eowan direcis—
the server o terminate if tha program sets the error flag. For more cezls about
the server cgtions see chapler 22, .

Figure 31 shews an examzle of the screen cso'zy, obtaines o7 running
simple.ktlona UNIX Bazed toclcel, for 3 uos- eoled "Jchn',

Lesrver ~sa -ab slmple btl

Plusdn tYpw Forur Dame :Jeha
Bu.is Joba

Fizure 3.1 Example cuisut prococec oy ~.orrg s implae.zzl.

It ycu are us.rg the simulater t0 run the examp'e f-23°zMuse one ¢! 2=z Thowing

COmmancs: . ’
isia -tq sizpla.bzl ' UNIX
isin /bq simple.bt) ME-ZI8VMS

The bq’ opticn specilies baich Guiel made which czuses the simulaiss 19 run the
program and ‘hen terminate. For more detans z-2.t how lo use the smulator
sed chapier 22,

72 TDS5 27502 bzrth 1991

———— e

33 . 3 Gelling started

-

33.6 Compiling -nd lmklng for olher transpuler types

lfyou are using a transputer olherthan a T400 T414 or T425 you must spec:fy a
zrgel transputer type for the compilation and linkage function, since the default
typa T414 will be inappropnate. Chapters 25 and 139 describe the oplions avail-
zote. The same option must be speaified to both the compiler and the linker,

henvise the linker will repont an error. In additicn, you must change the linker
mcirect file as described in chapter 19,

For example 1o compile and link the prog'ram ‘simple.cce’ so that it will run

en 3 Ta69, T801 or TSOS use 1he foilowmg command :mes as appropnate ~_

n P e

UMIX hosts: Col s .j‘.: SATSTTr Az . . "'.:-..' ..' ‘.'_-.'.':

oc zimple -£800 . S
ilink simple.tco hostio, lxb -f occa.mﬁ lnk =-t800

MS-DOS/VYMS hosts:

e .- - e
A

oc sa.mple /tBOO SR : .
ilink simple.tco host;o ln..b /£ occa.mﬂ 1nk /tBOO

14 Using imakef '

s anztzmztve reinzd of pregram development the tocicet Mdhehle generator
tmaked zonce used. This locl can procuce a tizhelle for any type of {ile that
anooe tuitweh the iccicet tlegls. imakef serves w0 purpese

» It enctles the user to generate a target file zutomatically (e.g. a bootatle
Ligy wenzut hovng to manually perers 1h2 intermec:ate stages of pro-
Gram caveicoment e, coempiing, linking, conigunng eig,

e For mIve comrex pregrams, comprsing ceveral mociles, it simplifies

iheangzrocoraten of changes o the program by Wdentiying depencencies
ang incsrperating them inia the Makelde.

nocrcer for imakef o be akle 10 idenufy file types. a dillerent system of file
fvensicns must be used to that used in the examiles abeve. See chapter 21
‘or a cescnpucn of imakef and the extensions used.

T3 cregte a Maketle for the exampla program, use the following command:

imakef airple.bdh

T2TDS 275¢C2 March 1931

3.4 Using imakef '37

The .b4h extension informs imakef that we wish to bu:ld a bootabie pmgram
fora T414 in the default HALT error mode. imake £ will create a Make’Zz cafled
simple.mak containing tull instrctions on how to build the program.

To build the pregram run the MAKE program on ‘.sir'nle mak. Tre enﬁré
program will be automatically compiled, licked and mzde bootable, rezdy for
loading onta the transputer.

For example. -
make -f simpl-é.:-nak‘ o] o UNlX'--_
make /£ simple.mak TOMS-BCSVMS

Ta run the program: o

- iserver -se -sb simple.bdh TNy

iserver /se /sb simple.bdh

If you are using the simulator to run the exampte program use cne of the ‘clowing kR

commands:

isim ~bqg simple.b4h UNIX °
isim /bg simple.bdh MS-CCEVMS

72 TDS 27502 hiarch 1991

(MS-DCSVMS) . -

<

3

Getting started

72 TDS 275 02

March 1991

4 Programming singlé,
transputers

This chapter provides an introduction to 6CCam programming using the tooiset,
using an example program for single processors. The chaptar follows on from
the information and example given in chapter 3 ‘Getling started”. For information
on programming multittansputer networks see chapter 5.

Before reading this chapter the user should already bL familiar with the concepls
and syntax aof the 0CCam programming language. For detailed information about
the language sea the ‘0ccam 2 Reference Manual® and for an iiimkaction to
occam see 'A lutonal mtmd:dron fo occam pmgrammmg

‘

4.1 Program examples S —

A simpla programmng example, to get you started, is pmvndad in section 3.3.

This chapter uses a more complex example, mus!raung separate compilation;
which can be found in section 4.12.

All the example programs are designed for boot lrom link boards. f you have a
board that boots frorn ROM you should set it to boot from link or run the exampla
programs using \he T425 simulator 1ool isim

4.2 oOocCcam programs

Within the toolset a single procassor program is a single 0CCam procedure with
a fixed pattarn of formal parametars, as illustrated below.

#INCLODE "hostio.inc”
PROC occam.program (CHAN OF SP fs, ta,
[1INT memory)
... body of proegram

The procedure and its parameters can have any legal 0CCam namas. You must
always supply the procedure with the same type of formal parameters as shown
above, to enable communication with the host.

All occam procedures are terminated by a colon (:), at the same indentation
as the comesponding PROC keywoerd. Do not forget the colon at the end of a
program.,

72 TDS 275 02 March 1991

40 , ’ 4 Programming single transputers

Program Input and output is supported by the host flle server, which is resident
on the host computer. Access to the host file server is via the /o libraries, which
are described in part 2, chapter 1. Whanaver routines from these libraries are
used the channels fs and ts must be passed to the routine so that i can
communicate with the host file server.

Channel £3 comes from the host filg sarver and ta goes to the host fila servar.
Both use protocol SP, which is defined in the include tile hostio.inc. Fig-
ura 4.1 shows how thesa channels are connected.

The array memoxy contains the free memaory remaining on the transputer evalua-
tlon board after tha program code has been loaded and the workspace allocated.
it is calculated by subtracting the area occupied by the program code and data
from the value spedified in the IEOARDSIZE host environment variable. The
memory array is passed to the program as an amay of typa INT, where it can
be used. By allowing programs to ba run on boards with diffarent memory sizes,
this array aids program portability between different boards.

transputer board

. host computer 3
£fa
e] " gscam
sarver ts .

Figure 4.1 Program input/output

4.21 Compiling programs

The compiler produces object code in TCOFF format for input 1o the linker. The
compiier 1s capabla of compiling ccde for any one of a range of transputers {the
IMS T212. M212, T222, T225, T400, Ta14, T425, T60C, TBO1 or T8OS) in one
of three error modas and with interactive debugging either enabled or disabled.
The compiler anables interactive debugging by default unless the compiler "Y'
option is used. '

The standard eror maodes are HALT systam and STOP process. A special
mode, UNIVERSAL, enables code to ba compiled so that it may be run in either
HALT or STOP mods. The target processor and error mode must be specified
for each compilation, using options on the command line. By defaull the compiler
compilas for an IMS T414 in HALT mode, and whan compiling for this transputer
type and error mode you may omit the options. In all other cases the options
must be supplied. :

72 TDS 27502 March 1991

TN

Complling 0CCam programs ’ 41

Other operating teatures of the compiler may be changed by 0, 4 See sec-
tion 25.2 for a tull description of these options.

it the compiler detects any errors, the file name and tine number of each arror
Is displayed along with a message explaining the error.

If the compilation succeeds, the compiler creates a new code file in the current
directory. The filename for the new file is derived from the name of the source
file and the default file extension .tco is added. The filename can also be
specified on the command line,

Compillation Information)

It is sometimes necessary to check how much workspace (data space) will be
raequired to run the coda. This information is stored in the code fila produced .
by the compiler, linker and librarian. To dispiay the information use the ‘I’ com-

mand line option or use the binary lister tool 11ist. For details of 11iat see
chapter 20. .

4.22 Linking programs

Whan all the component parts of a program have been compiled they must be
linked together to form a whole program. Component pans include the main

program, any separately compied units, and any libraries used by the program,
including the compier fibranes.

If roquired, the compiler libraries are automatically loaded by tha compilar unless
specifically disabled with the compiler ‘E" option. I! you are unsure whethar your
program uses the compiler libranes it is best to always link in the appropnate
library. QOnly library modules actually used by the compiled code wili be includad
in the linked codse file. The correct Lbrary for your program depends on the
transputar type of the compilation,

To assist the user, three linker indirect filas are supplied listing the compiler
libranes appropnate to different processor types. The ralevant fila should be
includad on the linker command line using the ‘£ oplion. occam2.lnk is
provided for the T2 senes, occam8 . nk for the T8 senes and occama.lnk
for othar 32-bit transputers.

For further details of the compiler libraries see part 2, secton 1.2,

By default, the order in which the coda modules ars specified on the command
lina determines their order within the linked unit; library modulas being placad
after the separately compiled modules. This defaull can be overruled by using the
compiler directive #PRAGMA LINKAGE (see section 25.10.7) and the linkage

72 TDS 275 02 March 1991

42 " 4 Programming single transputers

directive #SECTION (see section 19.3.1). These direclives anable the user to
prionitise the arder in which modules are linked together and so Influence the
use of on-chip RAM. A mby: of the linkad unit, showing the order of the madutes,
may be produced by specilying the linkar command line option 0"

423 Viewling code

Object code files produced by compiling or linking programs can be examined
using the binary lister tool 11ist. Information that can be displayed includes
procedure definitions, axported names, axtemal rélerencas within the coda, and
symbol data. For more details see chapter 20,

4.24 Making bootable programs

Code that has been linked 1o form a program cannot be loaded directly onto a
transputer evaluation board, for two reasans. Firstly, object code produced by
the linker and compiler tools contains extra information required by some tools.
This information must be removed before the program can be loaded. Secondly,
code to be run on a board which boots from link, such as the IMS B004, require
theaddition of bootstrap information to load the program and start it running.

Extranecus dala is removed, and a boot-from-link bootstrap is added, by the
collactor tool icollect.

4.2.5 Loading and running programs

Bootable programs can be lpaded onto the transputer evaluation board using
the host file server isarvar (See chapter 22).

The server must be given a number of paramsters when it loads a program. All
servar options are two characlers long, with 'S’ as the first character. Server
parameters are removed from the command line by the server, so you should
avoid using the same options for your own program (it is best to avoid giving
programs two lettar options beginning with the letter *S’).

To load a program use the ‘SB’ option and specily the file to be loaded. This
has the same effact as using options 'SR, ‘SS’, 'SI’, and 'SC 1ogether, that is,
it resets the board, provides access to host facililies such as file access and
terminal /o, and loads the program. The 'S’ oplon directs the too! to display
prograss information as It loads the file. To terminate when the transputer emor
flag is set, thereby enabling tha program to be debugged, add the servar 'SE'
option.

72TDS 275 Q2 March 1991

<N

4.) Transputer types and ¢lasses 43

Programs can also be loaded onto transputer networks, without using code on
the root transputer, by first using the $aXkip tool lo set up a skip process and
then loading the program using isexver. This can be useful when loading
programs onto extemal networks via a transputer evaluation board. Ut Is glso
usaful for debugging programs that normally use the root transputer to run all or
part ot a program. The debugger always runs on the root transputer. Provided
the network has at least one processor which is not used by the program, iakip
may be used In conjunction with Lservaer 1o load the program over the root
transputer. For details of skip loading see section 6.5.,

4.3 Transputer types and classes

This section describes the meaning of transputer types and classes and how
selection of the target processor atlects the compilation and linking stages of
program development. The section describes how to compile and link code
targetted at a single processor type and then descnbes how to compile and
link programs so that they can be exacuted on ditferent processor types. The
examples used in this section fallow on from the example introduced in chapter

4.3.1 Single transputer type

For those users who have a single transputer or indeed a natwork of transputers
ali of the same typa, the compilation and linking stages of program development

are very straightorward. Simply compile and link ali your modules far the required
processor.

The compiler and linker both support command line cpuans to select the following
processor types:

16-bit processors | T212, M212, T222, T225
32-bit processors | T400, T414, T425, Tao00, T801, TE05

Example to compile and link for a TB0O;

oc simple -T800 {UNIX)
ilink simple.tco hostio.lib -TB00 -f occamB.lnk

oc simple /T800 {MS-DOSNMS)
ilink aimple.tco hostio.lib /T800 /f occam@.lnk

The default 1arget processor for both the compiler and linker is a T414, 50 il you
are using this processor type the steps are even simpler;

72 TDS 275 02 March 1991

it e

docd Jusk/mic 'du1oS5/t st s

© 44) . 4 Programming single transputers

Transputer | Processars which ¢lass ¢an be run on

class ‘ -
T2 T212, M212, T222, T225
T3 T225

T4 | T414, T400, T425

TS | T400, T425 .
Te | Teoo,Teol,Teos . |
T8 |Teot, Teos

TA T400, T414, T425, T80, T801, TBOS
18 T400, T414, T425

Table 4.1 Transputer classes and largs! processor

occ simple (UNIX)
ilink simple.tco hostio.lib -f occama.lnk

oc¢c simple

. {MS-DOS/VMS)
ilink simple.tco hostio.lib /f occama.lnk

4.3.2 Creating & program which can run on a range of transpulers

The compiler and linker usa the concept of transputer class to enable programs

to be developed which may be run on ditferent transputer types without the nead
to recompila.

A transputer dass identifias an tnstruction set which is commen to all the pro-
cassors in that class. When a program is compiled and linked for a transputer
class it may be run an any mamber of that dass.

Note: Code created for a transputer class will often be less efficient than code
created for a specific processor type. Therefore, creating code for a transputer
class is discouraged in situations whera program efficiancy is a primary concem;
it should only be performed wherd there is a genuine need o produce code
which wiil run on a range of transputers or to reduce 1ha size of a suppon library,
whera program efficiency is not a major concern.

Table 4.1 lists all tha wransputer classes which the compiler and linker suppon
and indicates which processors the program can be run on.

In order to develop a program which will run on different processor types, perform
the following steps:

72 TDS 275 02 March 1991

f

e e e e e s — ——

4.3 Transputer types and classes 45

1 Identify the proeessors on which the program Is to run.

2 Using table 41 solect the dass whtch may be run on all the target pro-
€assors.

3 Complle and link all the program modules for this class.

For example 1o create a program which will run on both a T400 and a T425,
compile and link for transpuiar class T5: _
oc simpla -T5 .. - . S _ {UNIX)
ilink simple.tco hostio.lib —'.I'.'5 -f occama. 1nk

oc simple /TS (MS-DOSAMS)
ilink simple.tco hostio.lib ITS lt occama.lnk . :

Alternatively to create a program which Va‘l" n.m on a T400 T425 or a T800,
compile and link for transpuler class TA.

oc aimple -TA) (UND
ilink simple.tco hostio.lib -TA -! occama . lnk

oc simple /TA {MS-DOS/VMS)
ilink simple.tco hostio.lib /TA /f occama.lnk

Programs compiled for the T212, M212 or T222 transputers, which make up
class T2, can be run on a T225 (class T3) because a T225 has a similar but
larger instruction set than class T2 transputers. Similarly code compiled for a
T414 (class T4) may be run on a T400 or T425, which lorm class T5. The
T400 and T425 have additional instructions 1o those of the T414. Likewise, code
compiled far a T80O (class T8) may be run on a TBO1 or T805, which form class
T9. Again the T801 and TBO5S have additional instructions 10 1hose ot the T800,

4.3.3 Mixing code compiled for different targe!s

This section describes how cbject code compiled for one target processor or
transputer class can call and be linked with code compiled for different ransputer
types ar classes.

The ability 10 do this provides the user with greater flexibility in the use of program
modules:

o An inﬁividual module can be compiled once e.g. for class T4, and then

be called by separate programs 1o run on diﬂerent processor types o.g.
T414 and T425. .

72 TDS 275 02 March 1991

+ 46 . 4 Programming single trensputers

« Whan the user ig preparing a library for use by programs Intanded to
run on diffarant processor types, a singte copy of code complled for a
transputer class can be Inserted instead of mulliple copies for specific
transputers.

When linking a colection ¢f compiled units together Into a single linked unit,
the usar must salect a specific transputer type or fransputer dass on which the
linked unit is to run. As balore, this determines the set of transputar types on
which the code will un. When linking for a particular type or ciass, the linker
will accept campilation units compiled for a compatible class. Table 4.2 shows
which transputer classes the linker will accept wl\a'n linking for a particular class.

Link | Transputer classes which
class | may be linked

T2 (T2 .

T3 T3, T2

T4 [T4, TB. TA

T5 | 75,74, 7B, TA

T8 | T8
T9 |79, T8
T8 |TB, TA
TA | TA

Table 4.2 Unking transptiter classes

For exampla if the target processors are a T400 and a T425 the user may compile
tor classes T5 and T8 and link the code for class T5.

Coda lor a different transputer class can be included in the final linked unit, as
long as :

- it uses the instruction set, or a subset of 1he instruction set, of the link
class.

- the calling conventions are the same, (see below).

The same rules must also be followed during the program dasign stage, when
daciding which modules should call each other. Code for a ditlerent transputer
class can be called provided that it uses the instruction set or a subset of the
instruction set of the calling class. This is because tha compilar needs to know
which modules 1o select from libraries containing copies {or different processor
types.

72 TDS 275 02 March 1991

4.3 Transputer types and classes . l 47

Herce the headings in table 4.2 can be modified slightly to produce table 4.3
which identifies for each class the list of possible ciasses which it may call.

Calling | Transputer classes which
class | may be called

T2 | T2

T3 |T3, T2 }

T4 | T4, TB, TA '

T5 |75 T4, TB, TA . ll_

T8 |Ts
T9 |79, 78
T8 |TB,TA
TA |TA

Table 4.3 Calling transputer classes

In addition, the order in which the program modules ara compiled is affected,
In that a module which s called must be compiled before the calling madula is

compiled. Thisis explained in section 4.9 and an exampie is given in section
4.12.

Classas T8 and T9 cannot call or be linked with class TA, this is a change from
the iIMS D705/D605/D505 versions of the toolset. The reason why these classes
cannot ba linked together is explained in saction 4.3.4, which gives details of the
differences betwean the instruction sets, as additional information.

A library can be made consisting of the same modules compiled for dilferant
transputer types or classes. The user then needs only 1o spaeaty the library file
to the linker, and the linker will choose a version of a required routine which is
suitable tor the system bang linked.

The linker uses the rules given in table 4.2 to determine whether a compiled
module, found in a library, is suitable for linking with the currant system. So, for
example, to create a hbrary which may be linked with any transputer class or

specific transputer type, all routines could be compiled for classas T2, TA and
T8. .

If there are a number of possible versions of a module in a library the bast one
(i.e. the most specific for the system being linked) is chosen.

72 TDS 27502 March 19391

fem .

. '43 . 4 Programming single transpulers

4.3.4 Classes/nstruction seis - additicnal Information
The Instruction sets of the transputer classes ditfer in the following ways:

» Classas T2 and T3 support 16-bit transputers whereas all the other trans-
puter classes support 32-bit transputers.

« Class T3 s the same as class T2 except thal T2 has some exira instruc-
tions to support CAC and bit oparations and includes special dabuggmg
tunctions. Lo

¢ Class T5 is the same as class T4 axcspt that T5 has extra Instructions
to parform CRC, 2D block moves, bit operations and special debugging
functions.

o Class T9 is the same as class T8 except T9 has add:llonal debugging
instructlons.

» The TBGO, T801 and T805 processors usa an on-chip floating point pro-
cassor to perform REAL arithmetic. Thus a lage numbaer of floating point
Instructions are available for these Wransputers and for thelr associated
dassaes T8 and T9. Thaese instructions are listed in pan 2, section B.6.

« For the T414, T400 and T425 processors l.e. transputer classes T4 and
T5 the implementaton of REAL anthmetic is in software. These trans-
pulers make use of a small number of floating point suppont instnuctions
listed in pan 2, section 8.5,

« The instruction set of class TA only uses instructions which are common
to the T400, T414, T425, T800, T801 and T80S transputers. Therefore
it does not use the floating point instructions, the floating point suppon
instructions or the axira instructions to perflorm CRC, 2D block moves or
spacial debugging or bit operations.

« The instruction set of class TB only uses instructions which are commaon
to the T400, T414 and T425 processors. Therefore it uses the float-
ing paint support instructions, but does not use the extra instructions to
perorm CRC, 20 block moves or special debugging or bit oparations.

Note: code which indudes CRC, 2D block moves and floating point operaligns
implemented by ASM or GDY coda cannot be compiled tor classes TA or TB. The
comipier will report an error if this is attempted.

When considenng the similarities and differences in the instruction sets of differ-
ent transputer classes it helps to divide them into the three separate structures
as shown in figure 4.2.

72 TDS 27502 March 1991

4.3 Transputer types and classos 4§

] ® [
] ® [

T4 .
Direction of
permutted
calls
5

Figura 4.2 Structures for mixing transputer types and classas

By comparison with tables 4.2 and 4.3 it can bé seen that a module may only
call and be linked with modules compiled for a transputer class which belongs
to the same structure.

Classes T2 and T3 which form the first structure are targetted at 16-bit transput-
ors so it is obvious that they cannot be finked with the other classes which are
all targatted at 32-bit transputers,

The reason why classes TB and TS cannot call or be linked with classes TA,
TB, T5 or T4 is bacauss floating point results from functions are retumaed in a
floating point register for T8 and TS code and in an imeger register for all other
32-bit processors. Even if your code does not pertorm real anthmetic, linlung
code compiled for a TS or T8 with code compiled for any of the other classes is
not permuttad.

To summanse, compiling code lor tha transputer ciasses TA and TB enables it
to be run on a large number of transputar types, however, the code may not
ba as efficient as code compiled for one of the other transputer classes or for a
speafic transputer type. For exampla compiling code for class TS5 enabias the
CRC and 2D block move instructions 1o be used, whereas thase instructions are
not availabie to code compiled for classes TA and TB.

72 TOS 275 02 March 1991

' 50) 4 Programming single transputers

4.4 Error modes

For systems that require maximum security and reliabllity, the error behaviour Is
ol great concerm. QCCam 2 spacifies that run-time errors ara to be handled in
one of three ways, each suitable far different programs. The arror mode to be

used is suppiled as a parameter 10 both the compiler and linker. The options are
listed In table 4.4,

L3

Ontlon(s} | Description
B

HALT moda
s STOP mode
b4 UNIVERSAL mode

Table 4.4 Compiler and linker options for selecting error mode

The first moda, called HALT system mode, causes all run-time errors to bring the
whoia system to a halt promptly, ensuring that any errant part of the system is
prevenied from corrupting any other part of the system. This mode is extremaly
useful for program debugging and is suitable for any system where an arror is
to be handled extemally. HALT system mode is the default for the compiler, and
you should use this moda when you may want to use the debugger.

Note: on the IMS T414, T222 and M212, HALT moda does not work for pro-

cesses running at high priority, as the HaltOnError flag is cleared when going
to high prionty.

The second mode, calted STOP moda, allows more control and containment of
arrors than HALT mode. This maps alt errant processaes into the process STOP,
again ensunng ihal no arrant process comupts any other part of the system. This
has the efiect of gsacually propagating the STOP process throughout the system,
This makes it possible for pans of the system to detect that another part has
farled, for axample, by the use of ‘watchdog' timers. It allows multiply-redundam,
or gracetully degrading systems, 10 be constructed.

The third mode, called UNIVERSAL mode, may behave as either HALT or STOP
mode depending on the transputer's Halt-On-Error flag. For example ifa library is
compiled in UNIVERSAL moda, it may bae linked in HALT mode with HALT mode
modules and it will bahave as if it had been compiled In HALT mode. Altematively
if it is linked in STOP modae with STOP mode modules it will behave as if it had
been compiled in STOP moda.

If a brcgmm. targetted at a single processor, is compiled and linked in UNIVER-
SAL. the collector tool will treat the linked unit as though it had been linked in
the dalault ermor mode which is HALT mode.

All separately compiled units for a single processor must be compiled and linked
72 TDS 275 02) March 1931

——
!

-

44 Error mo&es 81

with compatible error modes. Whare a library Is used the module of the appro-
priate error mode will be selected. ..

Code which Is campiled in either HALT or STOP mode can call code compiled
In UNIVERSAL mode, howaver code compiled in UNIVERSAL mode may qnly
call code which has aiso been compiled in UNIVERSAL mode. Code which has
been compiled In HALT mode may not call or be called by code compiled in

STOP mode. The iinker will repont an error if ussr attempts to link HALT and
STOP medules together.

4.4.1_ Error detection .

In some circumstances it may be dasirable to orhit the run time error checking
in one part of a program, for exampie, In a time-critical section of code, while
retaining arror checks in other parts of a program, for debugging purposas.

The compilar provides three command line options to enable the user 'torconuol
the degree of run time ermor detection; they are the X', ‘U" and A’ options
&nd they prevent the compiler from inserting code to explicitly perform nun time
checks. .

These oplions should only be used on code which is known 1o be correct. The
compilar does not insent a lot of aor checking code so it should only be disabled
as a last resort,

It is the user's responsibility to ensure that errors cannot oceur. The ability to
disable certain error checking code by using the 'K and ‘O’ opticns should not
be abused in an attempt to use illegal code, since there Is no way of telling the
compiler to ignare ail errors,

The "K' option disables the insertion of code to perform run time range checking.
In this context range checking only indudes checks on array subscnpting and
array lengths. Note: in any situaton where the compiler can detect a range
check error without specifically adding code, it mav still do so. The type of
situation where this is iikely to happan is when an array subscript such as [i + 5]
is used, and ¢ + y overflows.

The ‘T° option disables the insertion of code whose only purpose is 1o datect
some kind of error. This option i3 stronger than the 'K’ option, and includes the
'K’ option, so it is not necessary to use both options together. (Note: that the
‘U’ does not include the ‘HA’ option which is described balow).

The 'O’ option will disable the insartion ot run-ime checks 1o detect occumences
such as the following: :

727TDS 275 02 March 1991

52 . 4 Programming single transputers

negalive values In replicators

errors in type conversion values,

errors in the langth of shift eperations,

zero langth moves,

array range ermors,

errors in replicated constructs such as SEQ, PAR, IF and ALT,

. Note: again in any situation where the compiler can detect an error without

specifically inserting code, it may stili do s0. Thus asithmetic overilows, etc, can

still cause an error. (To avold overfiow arrors the operators PLUS, MINUS and
TIMES can be used). . I .

I the "T" option is used in conjunction with HALT moda, it will prevent expticit
checking for floating point errors in those cases whera library cails are not used
to perform floating point arithmetic (see below). In addition i the ‘U’ option is
used with STOP or UNIVERSAL mode, it inhibits the ability of the system to
gradually propagate a STOP procass throughout the system. This means that
the U’ option, when used with any error mode produces identical coda. The
object file, however, is still marked as being compiled In a particutar emor moda.

Thus, faster cods is produced by using the O° option with any armor mode. Any
libraries which ara linked with the modules will maintain the arror mode and level
ol arror detection that they were compiled for. In practice, libraries compiled in
HALT mode will be lastest, so for benchmarking, modules should be compiled
in HALT mode and the 'U" option used.

.t the user requires the equivalent of the UNIVERSAL error mode implemented

by the IMS D705/0605/D505 varsions of the toolset, then UNIVERSAL error
mode shouid be used and the U° option specified. Howaver, the OOmpllal' will
not incorporate library entrias compiled with the ‘U° option.

The followmng points summarise the differances in the implementation of eror
detection between the current release and previous releases of the tooiset i.e
the IMS D705/0605/D505 togisels.

72 TDS 275 02 March 1931

.

4.5 Interactive debugging 53

Comparlson of arror modes with the IMS D705/D505/D505 toolsets

The detaction of errors and the action that is taken when an amor is detected
are separaled in the cument toclset.

HALT and STOP mode behave the same as they did in the previous tooisats.

UNIVERSAL mode no fonger tums aror detection off, instead it produces
code which may be linked in either HALT or STOP made.

The degree of run-time checking may be raduced bb using the 'K’ and U’
command line options.

To obtain the equivalent of the UNIVERSAL mods implemented by the IMS
0705/D605/D505 toolsets, compile in UNIVERSAL modse and use the U op-
tion. Note: this will not cause the compiler to incorporate libraries compiied
with the "U’ option.

To obtain the equivalent of 0cCcam UNDEFINED mode (sea the ‘Occam 2
Raference Manual'), compiie in any error mode and use the “U" option.

The ‘“HA" option disables the insertion of cods to check calls to ASSERT.

The occam 2 combiler tecognises a procedure ASSERT with tha following pa-
ramaeter:

PROC ASSERT (VAL BOOL test)

At compile time the compiar will check the value of test and if it is FALSE the
compilar will giva a compile tima error; it itis TRUE, the compiler does nothing.
tast cannot be checked al compie-tima then the compiler will insart a run-time
check to detect its status. The "NA' option can be used 1o disable the insartion
of this run-time check.

[}

4.5 Interactive debugging

The compilar and linker tools support interactive debugging by default. When in-
teractive dabugging is anabled the compiler or linker will generate calls to library
routines to perform channel Input and output rather than using the transputers
instructions. This does cause a performance penalty o be incurred when in-
teractive debugging is enabled. Disabling interactive debugging by using the
command line option 'Y’ resulls in faster code execution.

Interactive debugging must be enabled in order 1o use the interactive features of
the debugger. However, the debugger does not have 1o be present in order to
run the code.

72 TDS 275 02 March 1931

"84 4 Programming single transputers

Code which has interactive debugging disablad may call code which has inter-
active debugging enabled but not vice versa. If interactive debugging is disabled
for any module in a program this will prevent the whole program from being
debugged interactively.

4.6 Allas and usage checking

Tha compiler implaments the alias and usage checking rules described in the
‘occam 2 Reference Manual’. Alias checking ensures that elements are not
referred to by more than one name within a section of coda. Usage checking
ansures that channels are used correctly for unidirectional pgint-to-paint commu-
nication, and that variables are not altered while baing shared between paraliel
procasses. For a further discussion of the rationale behind these rules, see sec-
tions 25.13 and 25.14. Information is also given In The Transputer Applications

Notabook — Architecture and Software, Chapter 6 — The dsvelopment of occam
2', ' -

Alias and usage checking during compilation may be disabled by means of the
compier options "A’ and ‘N'. Using the ‘N’ option it is possible to cany out alias
checking without usaga checking, However, it is not possible to perform usage
checking without alias checking, as the usage checker relies on lack of aliasing
in the program. 1f you switch off alias checking with option 'A’, usage checking
Is automatically disabled.

The "K' and ‘U’ options will also disable the inserion of alias chacks that would
otharwise be perlarmed at run-lime. These options do not affect the insertion of
alias checks al compie time nor the insertion of usage checks which are only
performed at compile time. :

Alias checking can impose some code penalties, for example, extra code is
insened if array accesses are made which cannot be checked until runtime.
The 'WO' command line option will produce a waming massage every time one
of thesa checks is generaled. However, alias checking can also improve the
qualily of code produced, since the compiler can optimise the code if namas in
the program are known not to be aliased.

The compiler usage check detects illegal usage of variables and channels, for
example, attempting to assign 10 the same vanable in parallel. The compilar
performs most of ils checks correctly, butl with certain limitations. Normally,
if it is unable to implement a check exactly, it will psriorm a stricter check. For
example, if an array element is assigned ta, and its subscript cannat ba evaluated
at compile time, then the compiler assumes that all elements of the amay are
assigned to. If a correct program is rejected because the compiler is imposing
too stnct a rule, it is possibie 10 swilch off usage checking.

72 TDS 275 02 March 1991

-

4.7 Using separate vector space ' 85

it should also be noted that usage chacking can slow tha compiler down. For
example, programs which contain replicated constructs defined with constant
valuas for the base and count, will be checked lor each iteration of the rou-
tine. Replicated constructs which have variable base ang count values are only

chacked once with a stricter check, because tha compiler cannot evaluate, at
this point, the actual limits of the raplication.

4.7 Using separate vector space

The compiler normally produces coda which uses separlate vector space. Amays

which are dectared within a compilation unit are allocated into a separata vector
space’ area ol mamory, rather than into workspace when they are eithar:

« groater than 8 bytes or

e« greater than 1 woid, whare the elements are smailer than a word (e.g.
[5])BTYE).

This decreases the amount of stack required, which has two benefits: firstly,

the offsets of variables are smaller, access to them is {aster; secondly, the total

amount of stack used is smaller, allowing better use to ba made of on-chip RAM.

The compiler option Vv disablas the use of a separate veclior space, in which
case arrays aro placed in the workspace.

When a program is loaded onto a transputer in a nutwork, memory is allocated
contiguously, as shown in figure 4.3,

This allows the workspace (and possibly some of the code) 1o ba given priority |

use of the on-chip RAM. Ganerally, the best parformance will be obtained with
the separate vector space enabled.

The default allocation of an array can be overriddan by an allocation immediately
after the declaration of an array. This allocation has ona ¢f the forms:

PLACE name IN VECSPACE

or PLACE name IN WORKSPACE :

For example, in a program which is normally using the separate vector spaze,
it may be advantagaous 1o put an important buffer inlo workspace, so that it is
more likely to be put into internal AAM. The program would be compiled with

72 TDS 275 02 March 1991

e

56) 4 Programming single transputers

MOSTNEG INT
+ IBOARDSIZE

Unallocated memory
(passed as parameler
10 programy}

v
Qccam vector space

occam code

occam workspace

MemStart
Reserved by transputer .
#800000 MOSTNEG INT

Figure 4.3 Mamory allocation on a 32-bil transputer

separate vector space enabled, but would include somathing fike:

[buff.size]BYTE crucial.buffar :
PLACE crucial.buffar IN WORKSPACE :

For a program where it is required ta put all of the data apan from one large
array into the workspace, the program would be compiied with separate vector
space disabled, and the array allocated to vector space by a place slatement
such as PLACE large.array IN VECSPACE.

Within a program it is possible to mix code compilad with separata vecior space
on and code compilad with separate vector space off. The pans of the program
which have been compiled with separate vactor space enabled will be given use
of the vector space.

Note that cenain libraries such as hostiec. lib use vector spaca. Therelore,
it is lkely thal some use of vector space will be made, even if vector space is
disabled for a program modute.

N

72 TDS 27502 March 1991

-

4.8 Sharing source batween filos ' 57

4.8 Sharing source between ﬂles

The source of a program can be split over any number of files by using the
#INCLUDE directive. This directive anables the user to specify a flg which
contains occam source. The contents of this file are included in the source
at the same point and with the same Indentation as the #INCLUDE directive.
Include files may be nested 1o a maximum depth of twenty. By convention . inc
file extension should be used for CCCam constant and protocol definitions. An
exarnple of using the #INCLUDE directive is given below:

imCLUDE *infile.ing™ =-- aourcel in infila.ine

The name of the fie to be included is placed in quotes All of tha line following

the closing quote may be used as for comments. Dlrac:rves must occupy a single
line. -

49 Separate compilation

Separate compilation reflects the hlararchical structure of occam, and the oc-
cam complier compiles OcCam procedures and/or functions (PROCS and
FUNCTIONS). Any number ol procedures and/or functions may be comgpiled at

any time, provided the cnly extarnal references they make are via thair paramater
lists.

A group of procedurgs and/or functions that ara compiled togethar are known as
a compilation unit. Each procedure and/or function in such a group may be called
internally by other procedures daclared later in that group, or extarnally by any
occam in the scope of the directive which references that separate compuation
unit. Constant declarations and protocols are also permitted Inside a compdation
unit, for the use of the precedures and functions within it. The scope of a separate
compilation unit is the same as any normal QCcam procedure or function.

Separately compiled unils are referenced from OCCam source as object code
fiies, using the ¥USE directive. The object file mav be a compiled {.tco) or
library (. 1ib) fle. It the file extension is omitted the compiler adds the extension
of the current cutput fle. This wili be (. teo) unless an output file has been
specified using the ‘0" option.

An exampie of how to reference a separately compiled unit is shown below.

#USE "scunit.tco” =-- code in file scunit.tco

The filename must be endosed in double quotes. All of the line following the
closing quote can be used as commant. The directive must occupy a singe line.

72 TDS 275 02 March 1991

58 . 4 Programming single transputers

Separate compilation units may be nested to any depth and may contain
INCLUDE directives. They may also usa libraries, as described In section 4.11.

A separate compilation unit must be compiled before the source which references
It can ba compiled.

4.9.1 Sharing pretocols and constants

occam constanis and protocols may be declared and used within a compilation
unit according to the rules of the language. Where a constant and/or protocol is
1o be used across separate compilation boundaries, it should always ba placed
in a separate file. The fie should be referenced in any compitation unit where it
is needed, by using the #INCLUDE direclive before any #0SE directive, which
atroduces procedures using the protocol in their tormal parameter lists. Proto-
cols will also need to be referanced in any enclosing compilation unit {because
. the channels will either be declared there or passed through). For example,

suppose we have a protocol P defined in a file myprot.inc. We might then
use it as follows:
PROC main () T
#INCLUDE “myprot.inc®
#USE “mysc.tco"

CEAN OF P actual.channal :
BPAR

do.it (actual.channal}

.
H

The saparately compiled procedure do. it, in the file mysc.oce, would lock
like this:

#INCLUDE “myprot.inc" -- declares protocol P
PROC do.it (CHAN OF P in)

SEQ
-.. bedy of proceduxe

Since the protocol name P occurs in the formal parameter list of the separatoly
compited procedure do.it, the compilation unit must include a #INCLUDE
diractive, preceding the declaration of do. it, to introduce the name P.

72 TDS 27502 March 1991

410 _Using imakef A - 59

4.9.2 Compliing and linking large programs

Building a program which includes separate compilation units and library ref-
erances Is straightforward. Separate compilation units in the program can be
compiled individually by applying the compiler to them. Nested compilation units
must be compiled in a bottom-up order before the top level of the program is
compiled; finally the whole program is linked together.

Separate compilation units must be compiled before the unit which references
them can be compiled. This is because the object cloda contains all the infor-
mation about a unit {names, formal parametars, workspace and code size, efc) -
which is needed 1o arrange the static allocation of workspace and 1o check cor-
rectnass across compilation boundaries. This information may ba viewed using
the iliat tool, .

When a program is linked the code for ail the separate compilation units in the
program Is copied into a single fle. in addition, code for any libraries usad Is
Included in the fita. Whare libraries contain more than one module, only those
modules containing routines actually required in a program are linked into the
final code. This heips to minimise the size of the linked code.

The target processor or transputer class and error mode must be specified to the
linker to enable it o select appropriate library modules, Qnly one processor type
or class may be used for the linking process and this must ba companbie wilh
the transputer type or ciass used o compile the modules. The error mode used
lor tha linking process must also be compatible with the error mode(s) used to
compile the modules. Campatible use of the compiler and linker *Y* opton must
also be adopted for the modules to ba linked.

It there are a large number of inpul modules, they may be supplied to the linker,
within an indirect fue, as a list of filenames. Indirect tiles may also comtain
directives to tha linker. Linker directives enable (he user 10 customise the lnkage
operation and include faciities to modify the use of workspace, create lorward
relerences to symbols and 1o nest inditect files. Chapler 19 provides detaled
information of how to run and use the linker.

4.10 Using imakef

When a change is made (o pan of a program i is necessary to recompile tha
program to create a new code file reflecting the change. The pumose of the
separate compilation system is to split up a program so that only those parts of
the program which have changed or which dapend on the changed units, need 1o
be recompiled. ralher than needing 1o recompile the whole program. Howevaer,
it would be tedious to have to remember which modules had been edited, which
modules might ba affected by calls and tha order in which the modules were

72 TDS 275 02 March 1991

Fur rma

60 . 4 Programming single transputers

compiled and linked, For this reason a Makatile generator imakef Is supplied
with the toolset and may be usad to assist with building programs consisting of
several modules. This tool, when &pplied to a program (or part of a program),
compiles a list of dependencies of compilation units and uses this list 10 produce
8 Makefile. The Maketile can be used with a suitablte MAKE program to recompile
only the changed pars of a program. This énsures that compilation ynits wil
always be recompiled where a change has made this necessary,

To use the Makefile generator you must tell It the name of the fila you wish 1o
build. The tool can produce a Makefile for any type of fila that can be built with
the toolset tacls. [n order tor imakef to be able'to identity file types, a dittarant
system of file extensions must be used to that used In this chapter. The file

name rules for imakae? are described in chapter 21 together with details of haw
to use tha tool.)

4.11 Libraries

A library is a collection of compiled proceduras and/ar tunctions. Any numbaer
of separately compiled units may ba made into a library by using the librarian,
Saparately compiled units and libraries can be added to existing libraries. Each
compilation unit is treated as a separately loadable module within a library. When
compiling or linking, only modules which are used by & program are loaded. The
fules for selective loading are describad in the lollowing section,

Libranes are reterenced from 0CCam source by the ¥USE directive. For exam-
ple:

#USE "hostio.lib"” =~ hoat server library

The filaname is enclosed in quotes. The rest of tha line, following the dosing
quote, may be used for comments. Directives must occupy a single line.

Libranes should always use a .1ib file extension, and this must always be
supplied in a #USE directive,

4111 Selective loading

Each module (separately compiled unit) in a library is selactively loadable by the
linker: i.e. pans of a library not used or unusable by a program are ignored,
The unit of selectivity is tha tibrary module: |.e. if one procedure or function of a
library module is used then ail the code for that module is loaded.

The compiler is selective when a library is referenced. Only modules of a library
that are of the same, or compatible, transputer type or class, error mode and

72 TDS 275 02 : March 1991

S vd e ey e mad = s .

- . Tt M EREe Sl e e e rr—— ——

411 Ubraries 61

method of channel inputoutput, are read (see sactions 4.3, 4.4 and 4.5).

Selective loading Is based on the following rutes:

1 The transputer typa or class of a library module must be the same as, or
compatibla with, the cods which could uss it.

2 The error moda of the library module must be the same as, or compatible
with, the cade which could use . | .

3 The interactive debugging mods (i.e. whether interactive debugging is
enabled or not) of tha library must be the same, or compatible with, the
code which could use it. .

4 At least one routine (entry point} in a module is called by the code.

Rules 1 to 3 apply to the compiler. Al the rules are used by the linker. Tha
compiler only selects on transputer type, error mode and method of channel
input/output. It is not until the linking stage that unused medules are rejected.
For details on mixing processor classes and error modes see sections 4.3and 4.4
respectively. .

4.11.2 Bullding llbraries

Libranes are built using the librarian too! i1ibr. Libranes can be created from
either separately compiled units (.tco or library files . 1ib} or from linked units
(.1ku files) but not a combination of both. The librarian takes any pumber of
input files and combines tham into a single library file. Each separately compiled
unit forms a singla module in the library,

When farming a library the librarian will wam if there are multiply defined routings
{entry paints). In other words, for each combination of transputer type, emor
mode and method of channel input/output there may oniy be one routine with a
particular name. For furthar information on building toranes see chapter 18,

As an example consider building a library called mylib.lib. The source of
this library is contained in a fle called mylib.oce and has been wntten to
ba compilable for both 16 and 32 bit transputers. We want the library to be
available for T212 and TBOO processors in halt on emor mode only. Having
compiled the source for the two processors we will have two fles, for example:
mylib.t2h and mylib.t8h. To form a library from these compilation units
use the lollowing command lina:

ilibr mylib_ t2h mylib.t8h

72 TDS 275 02 March 1991

62 - 4 Programming single transputers

When an oulput flaname Is not spacified, as In this example, the librarian uses

tha first file in the list 10 make up the output file nama and adds the exiension _

+14b. In this case i will write the Iibrary to the file mylib,.1lib.

The librarian can afso take an Indirect fllg containing a list of the files 1o be bulit
Into the library. Such files should have the same name &s the library, but with a
-1bb file extension. So, still using the abova example, if the names of the files
1o make up the library were put In a file called mylib . 1bb, we couid then build
the library using one of tha lollewing commanda:
ilibr ~f mylib.lbb ~-o mylib.lib {UNIX)
ilibr /£ wylib.lbb /o mylib.lib {MS-DOSNVMS)

Compiled modules can be added to an oxisting library file. However, if the
librarian attampts 10 creale an output file with the same nams as an input library
file, an error will be produced. This can be avoided by specifying a diffarant
output filename using the ‘o’ option. Alternatively if one on the compiled modules
1o be added to the library has a ditlerent name, this could be spacified first on
lhe command line. Once the new library file has been created it can be renamed
if necassary. Adding modules to an existing library does not require programs

- which call it, 1o be recompiled, provided it is given its ariginal name in fts final
form,

The Makefile generator imakaf can be used to assist with the building of §i-
braries. This is particularly useful whera libraries are nested within other libraries
Or compuation units, because imakaf can identily the dependencies of librarias
on other modules or separately compiled units. For further nformation about the
imakef tool see chapter 21,

For further detais of how 1o use the libranan and how to optimise libraries see
chapter 18.

4.12 Example program — the pipeline sorter

This section introduces an example which serves to show how a large program

might be structured, interms of separate compilation units, libraries, and a shared
protocol.

]

4.12.1 Overview of the program

The program sors a series of characters into the order of their ASCIl code
values.

Figure 4.4 shows the basic structure of this program. There are three processes:

72 TDS 275 02 March 1991

N

.

R I T b Lt T 3 T R W Ty

4.12 Example program = the pipellne sorter . 63

Figure 4.4 Basic structura of sorar program

the input process, the output process and the sonel process. We can decom-
pose the sorter process by using a pipeline structure. This uses the algonthm
described in ‘A tutorial introduction to occam programming’. It we design the
pipeline carefully we can ensure that sach element of the pipeline is identical to
ali tha other elaments. The pipeline is servad by an input process, which reads
characters from the keyboard, and an output process which writes the sorted

characters to the screen. Figure 4.5 shows the structure of the program using a

pipelina.
element | _{ elament
1 n-1

Figure 4.5 Pipeline of n elements

An obvious implemantation would be to write an occam process for each pro-
cess in figure 4.5, using a replicated process for the pipeline. Communucation
batween the processes is via 0C¢am channsls and to aid program comectness
we should use an 0CCam PROTOCOL for these channels. This protecal must
be shared by all the processes. As the occam compler compiles processes
(PROC3) and as each of the processes is independant wa can imptement each
one as a separately compiled unit. The processes shara a common protocol
and the best way to ensure consistency is to place the protoco! in a separate fie
and use the #INCLUDE mechanism 10 access it These processas can thaen be
calied in parailel by an enclosing program which can access the c0dé of each
procass by the #USE mechanism,

There is a problem with this implementation because two processes require
access to the host file server. The host file sarver is accessed via a pair of
occam channels and 0ccam does not aliow the sharing of channels ba:ween
processes. There are a number of ways around this problem. One solution is to
use a mulliplexor process for the server channals, as dascribed in section 8.5,
Another salution 1S 10 merge the twa processes into a single process. This
solution is used because the program accesses the server in a sequential manner
(read a line then display sorted line, read a line etc.). Figure 4.6 gives the final

72 TDS 27502 March 1951

64 4 Programming single transputers

process diagram for the program,

element

alemaent
0 n-1

Figure 4.6 Program with combined Inq:‘.xt/output process
The implementation can be split into four files: -~~~ = e
elemant.occ the pipeline sorting element s
inout.oce the input/output pmcess
sorter.occ the enclosing pmgrém -

sorthdr.inc the common protacol definition

Figure 4.7 shows the way these files are connected together to form a program.

N sortar
$INCLODE 1} i fuse
JUSE 1
alemant inout
X
[TieciooE
aorthd:;' 2 $INCLUDE

Figure 4.7 File structure of program

The source of tha program is given below and is supplied in the ‘examples’
directory. You can either copy thesa lies to a working directory or you can
type in the source as given balow. For detals of the toolset directories see the
Delivery Manual that accompanies the shipment.

Two other files are required 10 completa the program. These are the host file
serverlibrary hostio. lib and the corresponding . inc file containing the host
file server constants.

72 TDS 275 02 March 1991

e

T AR eiAe e e Ry e e cm s ke o e ot et emmtd i

412 Exarnble program - the plpelinag sorter 65

4.12.2 The protocol

Declarations of constants and channa protocols are contalned In the inchude fie
sorthdr.ine, which s listed below. .

PROTOCOL LETTERS
CASE,
letter; BYTE -
end.of . lattars

terminate i
A T A
e !

VAL number.slements —iS iOO:

This daclares a protocol called LETTERS, which permits threa differant types of
message 1o be communicated: . e

MIARY L, .. el

letter - followed by the chamcter to be sorted.

and.of.letters - marks the end of the saquencs to be sorted.

tarminate = signals tha end of the program.

The constant number .elements is also declared. This defines hoth the num-

ber of sarting elements in the pipeline and the maximum length of the sequance
of characters that can be sorted.

4.12.3 The sorting slement

The sorting element element . oce is listed below:

#INCLUDE “sorthdr.inc"

PROC sort.element (CHAN OF LETTERS input, output)

BYTE highast:
BOQL going:

SEQ
going := TRUE
WHILE going
input ? CASE
terminate
going := FALSE

¥
72 TDS 275 02 March 1991

66 - 4 Programming single transputers

lettar; highest

BYTE naxt:
BOOL inline:
SEQ
inline := TRy
WRILE inline
input ? CAseE
letter; next
IF
next > highna?
- SEQ
cutput ! latter; highest
highest := next
TRUE
output ! letter; next
end.of, latters .
SEQ

inline := FALSE
output ! latter; highast
output ! end.of.letters
output ! terminata .

The maximum number of characters which can be sorted is determined by the
number of sorter processes. Ong character s soned per process.

4.12.4 The input/output process

This process consists of a loop which reads a line from the kéyboard. then
$6nds the line o the soner and, in parallel, reads the sorted line bacik. i then

It any Vo errors oceur the program will stop, allowing it 10 be examined by Ifle
debugger.)

72 TDS 275 02 : ‘ March 1991

e iR e PRSP AP JEUPSEIRINTS JIVILE I

412 Example program - the plpeline sorter

57

Tha input/output process inout .occ is listed beiow. -~ -

"$INCLUDE "sarthdr.inc"
#$INCLUDE *"hostio.inc™

PROC inout (CHAN OF SP fs, ts,

CHAN OF LETTERS from.pipa, to.pips)

#USE "hostio.lib*" o _1

(number.elements - 1]BYTE line, aorted.line:
INT line.length, sorted.length: . '
BYTE rasult:

BOOL going:

SEQ

so.write.string.nl (fs, ts,

"Enter lines of text to ba sorted *
*- empty line terminates”)

going := TRUE

WHILE going

SEQ

so.read.echo.line(fs, ts, line.length,

IF

line, result)

rasult <> apr.ok

STOP ~- atop if an errer occurs

TROE

PAR

so.write.nl (fs, ts)

SEQ

IF

{line.length = 0) == no more input

to.pipe ! terminate
TRUE
SEQ
SEQ i = 0 FOR line.length
to.pipe ! letter; lina[i}
to.pipe ! end.of.lettara

BOOL end.of.line:
SEQ

end.cf.lins :w FALSE

" sorted.length := 0

72 TDS 275 02

WHILE NOT end.of.line
from.pipe ? CASE
tarminate

March 1991

. €8 4 Programming single transputers

SEQ .
end.of.line := TRUE
: going := FALSE
letter; sorted.line{sorted.length]
sorted.length := sorted.length + 1
and.of .letters
SEQ
so.write.string.nl(fs, ts,
[sorted.line FROM 0
FOR sorted.length])
end.of.line :« TRUE
so.axit (fs, ts, spa.succesas) -~ terminate server

4.12.5 The calling program

This process calls the input output process In parallel with the sorter elements,
in a pipeline. The memory paramater must be declared, but the program doas
not use i. = . .

The calling program soxter.occ Is listed below.
#INCLUDE “hestio.inc”
PROC sorter (CHAN OF SP fs, ta, (]INT memory)

#USE "hoatic.lih" -- hoat i/o library
#IRCLUDE "sorthdr.inc"

fUSE “"incout*® -= separately compiled unita
#USE "element” .
[number.elemants + 1]CHAN OF LETTERS pipe:
PAR ~= run pipe between 1/0 processas
inout (fa, ts, Pipe(number.elements], pipe(0])
PAR i = 0 FOR number.slemants
sort.element (pipe(i}, pipe(i + 11}

4.12.6 Building the program

To build the program, first compile each companant of the program separately,
knk them togather, and add bootstrap code to the main compilation unit.

72 TOS 275 02 March 1991

4z .

T M R e e 1 R 3 Lt et Sty 4 e i g Sl

B A e el e Sy e aa s

4.12 Example program - the pipeline sorer 69

The program's components must be compiled in a bottom up fashion, that Is,
elament.occ and inout.oce first {In sither sequence), followed by the main

" program sortex.oce.

First, compile the sorting element element . ccc using the following command:
oc element

The file extansion can be omitted on the command lina because the source fla
has the conventional extension .occ. -

The compiler produces a file called element .tco, compiled lor a T414 in
HALT mods. .

Compile the input/output process using the foliowing command:

. oc inout

The compiler will produce a file called inout . tce, compiled for a T414in HALT
mods.

Then comgile the main body using the command line:
oc sorter

The compilar will produce a file called sorter. tco, compiled for a T414 in
HALT moda.

Having compiled ali the components of the program you can now link them
together to form a whola program. Any libraries used by the program must also
be specified to the linker. Tha library hostio.lib is the server library used
by this program, Remember tha include file, occama . 1nk, which idenufies the
other libranes, such as compiler libraries, required in the linking process. {See
section 4.2.2). To link the files use one of the following commands:

ilink sortar.tco inout.tco elamant.tco hostie.lilh -# occana.lnk
ilink sorter.tco inout.tco element.tco hostioc.lib /2 occams_ lnk

Whan spacilying aptions for any of the tools remember 1o use the corect prafix
character for your version of the toolset (*~' for UNIX implementations, and */*
for the IBM PC and VAXAMS implemantations). .

The finker will create the file sortex .lku linked lor a T414 in HALT mode.

H a main entry point is not specified, the linker uses the first valid antry point
that it encounters in the input. Therefore, in the above example, it is important

72 TDS 275 Q2 March 1991

L70 . : 4 Frogrammlng single transputers

1o llst the file ‘sorter.tco’ first. A main entry point may be specified within

an Indlract tha using the Unker directive #nainentry or on the command ling
using the 'WE’ optlon, ' .

Before you can run the program you must add bootstrap code. To do this use
the coltector too! icollact, using one of the following command lines:

icollect sorter.lku -t (UNIX)
icollect sortar.lku /t {MS-DOSA/MS)

The ‘t’ option informs the collector too! that tha Input file Is a tinked unit rather

than the output of the configurer tool. (The configurer is used for multl-processor
applications). .

The collector tool will create the fles sorter.btl and sorter.cfb. The
-bt1 fila contains the bootable program code. The .cfb fie is a configura-
tlon binary file which is created by icollaect as a by-product of creating the
bootable file; it is redundant as tar as this exampla is concerned.

To run the prog:ﬁm on a transputar board use one of the following commands:

iserver -se -sb sorter.btl . {UNIX)
iserver /se /sb sorter.btl (M3-DOSNVMS)

The "ab’ option specifies the file 0 be booted and loads the program onto the
transputer board. it has the eflect of resetting the board, opening communication
with tha host, and loading the program onto the natwork. The 'se’ option directs
the server ta tarminate if the program sets the error flag. For mare details about
the server options see chapter 22,

The program reads charactars from the keyboard, sorts the line and redisplays

it. Tha program will run until input Is terminated by typing RETURN on an empty
line. .

~Figure 4.8 shows an example of the screen display, obtained by running
sorter.btl on a UNIX based toolset. The user inputs the string ‘Sorter
program * and terminates the program by pressing RETURN.

i “08 =al il

Inuu-nol!-ttohm-cqtylmmlu

Sertar pregram
Sadpaseprerrt

Figure 4.8 Example output produced by running sorter.btl.

72 TDS 27502) March 1991

At s e e i gk A §

412 Example program - the pipeline sorter A

To run the program using the simulator use ona of the following commands; '

isim -bq sorter.btl o {UNIX)
Asim /bq sorter.bt} {MS-DOSNVMS)

The ‘b’ option specifies batch quiet mode which causes the simulator to run the

program and then terminate. For more details about how to use the simulator
sea chapter 23. .

412.7 Automated program bullding \

The imakef tool can be used 1o automate the development process. From the
above example it can be seen that there are many steps to go through when
building a program of any size. Some of these steps must be performed in a

specific order and if part of the program were changed than all affectad parts
must be recompiled and relinked etc.

MAKE Is a common tool for building programs. ¥ uses information about whan
filas were last updated, and performs all the hecassary operations to keep object
and bootable files up to date with changes in any part of the source, Makefies

&re the standard method of providing the MAKE program with the Information |
fieads,

The occam toolset Is designed In such a way that it I possible for a toal to

- construct Makefiles to buld occam programs. The Makafile genermator imakes

produces Makefiles in a format acceptable to most MAKE programs.

imakef requires the user to adopt a particular convention of fle oextensions,
The user then only has lo specly the target file he requires i.e. a bootabla
fle and imakef, using its knowledge of fla names rules, creates a surtable
Maksefle. This file has full instructions an how to build the program.

By running the MAKE program for tha file the entire program will be automaticatty
compiled, linked and made bootabie, ready for loading onto the transputer.

For more details about the imakef tool and an axample of how to c:"aalo a
makefite for the pipeline sorter program used In this chapter, see chapter 21.

72 TOS 275 02 March 1991

-

4

Programming single transputers

72 TDS 275 02

March 1991

rasay

5 Configuring transp...ar
networks

This chapter describes how to build prograrns that run on networks ol transputers.
It describes how to configure an 0CCam program for a network of transpuers us-
ing the accam configurer tool occonf and describes how to load the program
onlo a transputer network. These procedures are illustrated with an example
program for four ransputers. |

The chapter introduces the configuration language, whose syntax is specified
in part2, appendix E and the configurer ool ccconf, desenbed in chapter 26.
This chapler also includes examples illustrating vanous aspects of configuration,

51 Introduction

In order to buitd procrams tor mullitransouter networks a program is split into a
numpar of self contaned components, ana each of these is implementied as an
occam precess Each process may communicate with other processes resigent
on the same transpuler or, via inks, with processes on olher rancputers.

Programs conststing of 0CCAM processes can be run on single or muiioe trans-
puters, 1n any comoination. Performance requirements can be metl by azzsung
the application to run on ditfenng numbers of transputers, and by using difienng
nelwork topologies. The mapping of processes 10 processors on a transputer
network 1s known as conhguration. -

Transputer programs can be configured to run on any physical network of trans-
puters. They can be configured to be loaded from an extermal host cown a
transputer link, or 1o be loaded from ROM.

Configuration is achieved by including the pregram in a configuration descrption
wrilten 1n the OCZam configuration language. A configuration description is
created by the user as a text lile using the configuration language which is an
extension of 0ccam. The file is expecied by occon £ to have the lile extension
.pgm. A configuration descrnption may be processed by the configurer tool te
generate a configuration data file, which in turn may be processed by tne coliector
tool icollect o generate a transputer loaoable file.

Conventional file name extensions may be used lor these varous fiie types to
facilitate the construction of Makefiles using the Makeite generator 1901 Cnadter
21 oescribes how 10 use the Makelile generztor for program development and
the exiensions which should be used.

72TDS 275 02 March 1991

74 . 5 Configuring transputer networks

[

Within & configuration description the hardware network and the software de-
scription are kept separatea, This enables the software description to be used for
running the same parallel program on a variety of alternative hardware networks.
Likewise a paricular physical network may be described once for use in a var-

ety of configurations describing different programs that may be run on the same
network.

By using the fzcilities for calling other languages from occam, programs com-
piled from mixed language sources may also be configured using the 0Ccam
configuret. (These facilines enable the foreign language code 1o be incorporaled
into the OCCEm program as equivalent occam pr, cesses. An example of this
is provided in the examples directory supplied with the toolset. A gescription
of this methea of mixed ianguage programming is given in ANS! C toolset user
manual). Simiady it is possible to configure 0CCam modules {which are catled
by C programsy using the configurer provided with the ANSI C toolset. Detals
of how 1o ¢ tris are also given in the ANS! C toolse! user manual.

5.2 Configuration model
The configureon model consists of the following pans:

" » Ahacware network descnption which declares a network as a connected
grapn ¢f processors.

» A schware descnplion in the torm of an GCCam process.

s A mzo3 ng between the processes and channels of the software and the
noges {processors) and ares (transputer ink connections) of the network.
The mazping is atmeved by declaring names and, in the scopes of these
deciarzuans, referming to the names in the structures of the configuration
descnplon. Normal 0ccam scope rules apply.

The software cescnption takes the form of an 0cCam process with at least
as many paraiel sub-processes as there are hardware processors in the net-
work. Within the description each process which may be independently placed
on a processar, is introduced by a PROCESSOR consiruct naming a proces-
sor. Processsrs so named may either be the hardware processors declared in
the network czscription, or may be logical processors mapped onto the hard-
wiare processs’s in a separale mapping structure. In either case the processor

name mus! have appeared in @ NODE declaraton in whose scope the software
descnption is writen.

The connect:cns between processes in the sofiware description are defined by
occam charne!s. It is thus possible for the configurer tool 1o determine what
code is to be loaded onto whal processor, and to choosa its own mapping of

72 TDS 275 C2 . March 1991

5.2 Configuration model 75

channels onto physical connections between processors.

Some channels may be used 1o connect to hardware outside the network, such
as the development host or other hardware connected by means of link adaptors.
External objects of this kind are declared as EDGES in the hardware descrption,

All processors which are connected togethar are connected via their inks, rep-
resented in the language as aftnbutes, of type EDGE of declared NODES.

The connections to extemnal ecges, or those between processors may colicnally
be declared as ARCS, which assccale a name with a [pamcular connec:zn. T
enables exphcil mappings of channels onto these arcs to be made.

5.2.1 Configuration language

A conhiguration descripiion consists of a sequence of declarations and siaie-
ments in an extens:on 1o 0CCam and fotlows the usual OQCCamM sccope rules
Tnese declarations anc siatements are evaluated by the OCCAM comp.ier, which
is called dunng configurat:on by the confiqurer 100l occanf. Appenc.x E (in pan
2) gefines the syntax ot the OCCam configuration language and aisc ¢ves ge-
tails of how it difters from previcus impiementauons of the toolset i.e tne IMS
D705/0605/D505 produzts.

Configuration declaratons intrecuce physical processors, arcs and ecges of the
network, network connecuons and processor atinbutes, logical processcrs 1o be
mapped onto phys:ical processors, the sohware description, and the mapping
beiween logical and physical precessors.

Arrays ol NODEsS. EDGES. and ARCs may also be declared A configuration de-
scription includes one NETHORK, one CONF1G and, optionally, one MAPPING.
Each of the iems appeanng pefore CONFIG behaves as an Qoccam spec.h-
cation, and ordinary VAL abbreviattons may be included amongst these com-
ponents to facilitate the oescnption of scalable configurations. A NETWORK,
CONEIG or MAPP ING Is cptionally named by an identifier tollowing ds opening
keyword. '

Configuration declarations are usually followed by statements which penom var-
ious actions relating to the declaration. Actons are defined by SET, CCNHECDT
and MAP statements. The DO consiruct enables these statements 10 be grouned
or rephcated. PRCCESSOR sialements introguce processes which may be
mapped onto namea precessors.

The MAP statement may be replicated, via the DO construct, within 2 MAPPINS
declaration. SET and CONNECT statements may be used within a KZTWORK
declaration and may be combined in any order using the DO construct

72 TDS 275 02 March 1991

76 5 Configuring transpuler networks

Declaration | Description

NODE tntroduces processors (nodes of a graph). These processors
are considered to be physical if they are defined as par of the
hardware descnplion, or logical if they are defined as par of
the software description and mapped 1o a physical processar
as part of the mapping.

ARC Introduces named connections (arcs of a graph) between pro-
cessors {using the transputer links). These connections need
not be declared as ARCs unless channels are required 1o be
explicitly ptaced on parfticular links.'

EDGE Introduces exiernal connections of the hardware deserplion.
Exiernal edges may be the host, or any penpheral connected
via a link adaptor e.g. a joystick, disc dnve.

NETKORE | Delines the connections and attribule setungs of previously
declared NCDEs (physical processors).

MAPPING | Delines mappings between logical processors and physical
processors.

CONFIG Introduces the schiware descnotian.

Table 5.1 Configuration description declaratons

[Statement Description

SZ7T * Delines values for NODE attnpules.

CONNEZT | Delines a connaclion belween two EDGES, entner of two nodes

! or between a node and a declared external EDGE.

MAP Delines the mapping of & logical processor onto a physical
processor declared as a NODE.

PROCESSGR ! Introduces a sohware process and associates it with a log:cal
or physical processor. .

0o Groups one or more actions delined by SET, CONNKECT or
MAP statements.

Table 5.2 Configuration description statements
Ccde from otner files may be relerenced by means of the #OSE direclive; either
at the tcp leve:, or within the CONFIG construct. # INCLUDE direcuves can be
used 1o inc:iuze gther source files.

Il is sugges:es that the distinct sections are kept in different files, accessed by
#TINCLGBE crecuves from a ‘master’ file.

72 TDS 275 02 . tarch 1991

T

52 Configuration model 77

5.2.2 Overall struclure of a contlguration descriplion

A conhguration description consists of two or three parts; a hardware network
descnption, a sohware network description, and an opticnal mapping between
the two,

The hardware description defines processor connections. [t also detnes at-
tributes such as processor types and memory $izes. These processors are
known as physical processors.

The sotware description is basically an occam parallel process, annatated with
PROCESSOR statements to ingicate which processes are 1o be compiled tor
which processors. These processes are allocated to Jogical processcrs.

The mapping section tan be used to ease 1he task of changng a particular pro-
gram 1o execute on a diflerent harmware nelwork. The mapping seclon enables
ttus 10 be performed without modifying the sohware descrnplion in any way, by
flexibly mapping the logical processars onto the physical processors. As an
optimisaucn, for simple programs, or tor programs which wili never ne2d 1o oe
re-mapped, the scitware descrpion may reterence the phys:cal prccesscrs d-
rectly, avoiding the need 10 (NIrcCuce 10gical processor names.

The following exampte iliustrates the basic style of the language:
~- hardware description, omitting host connecticn

VAL K IS 1024 : —- useful constants for mexrory
VAL M IS K * K : -- si1zeS

NODE root.p, worker.p @ -- declare two procesascrs
NETWORK simple.network :
DO
SET root.p (type, memsize := "T414", 1 * M)
SET worker.p (type, memsize := “TB00", 4 = M)

CONNECT root.p[link][3] TO worker.pllink][0Q]

—-=- mapping
NODE root.l, worker.l :
MAPP ING
Do
MAP root.l ONTO root.p
MAP worker.l ONTO worker.p

—=- software description
#INCLUDE “"prots.inc" -- declare protocol
#USE "root.lku" -- must be linked units

72 TDS 27502 March 1991

78 . 5 Configurlng transputer networks

#0SE "worker.lku"
CONFIG
CHAN OF protocol root.to.worker, worker.to.root :
PLACED PAR
PROCESSOR root.l
root.process {worker.to.root, root.to.worker)
PROCESSCR worker.l
worker.process (root.to.worker, worker.to.root)

Note that the configurer can, in this exampile, auio[ﬁalically place the channels
onto the singe connecting link, assuming that the two channels are used in
difierent directans. The configurer can make this check by means of the normal
occam usage checking rules.

This example is illustrated in figure 5.1.

[
o«

oot .p worker.p
T4l4d ‘ T80O
] T X 0
am N
L)
)

Figuree 5 { & :gmng of sohware onto hardware

In a simple configuration sucli as this one where sach physical processor is
mapped onic a single logical processor, a shortened configuration descnption
may be used wnich omils the mapping section attogether and uses the physical
processor names directly in the sotiware description.

To devise this shortened descnption remove the mapping section and delete

the suffixes .o and .1 from the NODE declarations, SET, CONNELST and
PROCESSOR s:aiements.

72 TDS 275 02 March 1891

——

5.3 Hardware descriplion - . 79

5.3 Hardware description
5.3.1 Declaring processors
Processors are declared to have NODE type, as if they were 0CCam data items:

NODE worker -- single processocr
[No.of.workers]NODE pipeline : -- array of processors

5.3.2 NODE attributes . l

A NODE has a set of attnbutes, analogous to felds of a record. An atinbute is

referenced by subscnpting the name of the noge with the name ot the anhnouie,
The attributes are:

[IBYTE type : -- String describing processor type,
-=- see list below

[JEDGE link @ == Link connections, number may
-- depend on type

INT memsize : -- Memory size in BYTEs

BOCL root : —-- Defines root processor if there is

no BOST connection
== Size of ROM attached to processor
-—- Defines the priority of the program
code in memory
order.vs H -=- Defines the priority of the
program’s vectorspace in memory

INT romsize
order.code

The list of permissible attributes is in general dependent upon the NODE type
field, and may be extended for other NODE types in the tuture.

The attribute names, which are predeclared by the configurer, do not follow the
QCcam scope rules; they are only recogrused in the correct context.

The use of order.code and order.vs is explained in section 5.5.3.

5.3.3 NETWORK description

The NZTWORK keyword introduces a seclion which descrbes the connectivty,
and attnbutes of previcusly declared NODES. Tnese should be deciared out-
side of the NETWORK descnption, so that they are visible inside and beiow the
NETWORK descriplion.

To describe a single processor, the SET statement provides values for the pro-

72 TDS 27502 March 1991

3

cessor's ‘tes in the style of a muluple assignment.

NETWORh _.ngle '
SET processor type, memsize ;= "TEOO", 1024+1024)

The type attribute must be set to a BYTE array {of any length) whose contents
descnbe the processor type. Trailing spaces at the end of the processor's type
are ignored.

Supported types are: -

"T212" nT222" =p225m "M212%
“T400" *“Ti14* ~T425w |
“T8OO" "TRO1™ "TEQS™

The memsize attribute must be se! to the amount of usable memory attached
to that processor, as a conligusus amount staning at the most negative address.
It is specified in BYTES. -

Both the type and memsize annbutes must be delined for all precessors. No
alinbule may be defined more than onee for each processor, '
The above example could a'so be wtlen as a sequence of SET statements in
a DO construct:

HETWORK single
Do :

SET processor | type 1= “TBOO")

SET processor { memsize := 1024*1024)

Since the Do construct does not imply any particular ordering, there is no con-
straint on tre order in which atributes may be definad.

If a network is to be configured to be loaded from ROM, the attribute root must
be set to “RIE Ilor one processor only. By default this attribute is FALSE for
all processcrs. The attribute romsize should be set 1o the number of bytes
of ROM on the root processor. These attributes are ignored if the network is
configured = be baoted from link,

IF, SKIP a~Z STOP may be used in bO constructs and are effectively executed
al configurz:an time, :

Processors must be connected together by means gt CONNECT statements quot-

72 TDS 275 02 March 1991

5.3 Hardware descriplion

ing a pair of edges;
VAL K IS 1024: - ' -
- NETWORK pair.from.ROM ' : .
. DO
(SET procl (type, memsize = "TBOO", 2048 » K)
SET procl { Toot, romsize TROE, 256 * K)
SET proc2 (type, memsize : "T414", 1024 « K)
CONNECT procl{link] [0] TO pProc2{link] [3}

.
4

The order of the two edges in a CONNECT staiement is irrelevant,

Arrays of processors do not need to all have the same types or attnbutes They
can be set by using DO replicators within the NETWORK construct, and by using

conditionals, as in this {rather contnved} example:

NETWORK pipe

po
DO i = 0 FOR 100
IF |
(iN4y=0
SET procesaor(i] (type, memsize = "TBOO",
- 4 * {1024 * 1024))
TRUE

SET processor(i] (type, memsize := "T414",

2 * (1024 * 1024) }

PO i = 0 FOR 99
DO
CONNECT Processor([i] [1link] [1] TO
processor[i+1)[link] (0]
IF .
(i\2y=0
CONNECT bProcessor[i][link}[2] "TO
processor[i+2] [link] [3]
TROE
SKIP

More cemplicated expressions may also be used, as long as they can be eval.

uated at configuration time:

72 TDS 275 02

March 1591

B2 ' 5 Configuring transputer networks

VAL précessors IS ["T4I47, "T414", "T414", “TBOO"] :
RETWORK fancy -~ evury Lourth processor is different!
DO i = 0 FOR SIZE array :

SET array[i] (type := processors[i \ 4])

5.3.4 Declaring EDGEsS

Declared EDGES define the ends of external connections of a NETWORE. For
instance, a connection to another machine whose internal structure is trrelevant.

They are declared as though they were OCCAM daia types, and as usual we
can declare arrays of them: I

[10)EDGE diakdrive :
NETHORK disk,.farm
DO i = 0 FOR 10
DO
== insert code to set attributes, then:
CONNECT processor[i] [link] (0] TO diskdrive[i)

-

EDGE joystizk :
KODE controller
NETHORE n
Do
SET centroller (type, memsize := "T212", 64 % 1024)
CONKEZT controller[link][2) TO joystick

5.3.5 Declaring ARCs

In some circumstances a programmer may require to name a connection be-
tween two processors. This isn't normally necessary, because the configurer
“can place charnnels between processors onto links automatically, but where a
channel must be connected onto an external EDGE this is required. Also, if
there are multole links between two processors, and one link is set for soma

reason to go a: a different data rats than another, the programmer might wish to
have more corzrol.

These named Enks are calied ARCS, and are declared as though they were
Occam -data types. They are associated with a link connection by adding a
WITH clause o tne end of a CONNECT statement.

72 TDS 275 02 March 1991

-

&.8 Hardware descriplion B3

EDGE joystick :
ARC 1link.to.joystick :
NODE controller : '
NHETWORK n

DO .
SET controller (type, memsize := “T212", €4 * 1024)
CONNECT controller[link][2] TO joystick WITH

link.to.joystick

5.3.6 Abbrevialions [

occam style abbreviations are permitted, to enable easier reference 1o elements
of arrays, etc:

[10]NODE pipe :
NETWORK pipeline
DO i = 0 FOR 10
NCDE this IS pipeli)
SET this (type, memsize := "T414", 10624%1024)

Since HODES have an attribute 1ink, whose type is [] EDGE, we can 2-oreviate
one link of a processer as an ELGE:

[IO)NODE pipe
NETWORE pipeline
DO
DO i = 0 FOR 10
SET pipel[i] (type, memsize := "T414", 1024+*1024)
DO i =0 FOR 9
EDGE this IS pipeli J[link])[2] :
EDGE that IS pipe{i+l){link][3) :
CONNECT this TO that

-
-

Simple one-to-one mappings of logical to physical processors may alsc be ex-
pressed as abbreviauons:

NODE root.l IS root.p :

72 TbS 27502 March 1291

B4 5 Configuring ransputer networks

5.3.7 Host connection

There is a predefined EDGE named HOST, which indicates the connection to a
host computer;

NCDE single :
ARC hostlink :
NETWORK BO0O4
DO
SET single (type, memsize := "TBOO", 1000000)
CONNEST single[link][0] TO BOST WITE hostlink

: f
:

When configuring a program which is designed to be booted via a transputer
link, one processor musi be connected to the predefined EDGE EBOST.

538 Examples of network descriptions

1} Single prczessor configuration connected 1o host:

WODE My2004:
ARC hos:link:
HETWORF. BOO4
jale]
SET MyB0O04 (type, memsize := "Td414", 2 * M)
CONNEZT MyBOO4[link) [0] TO HOST WITE hostlink

This configuration is Hlustrated in figure 5.2,

MyBOO4

T41d

-nOx
jé

2y

Figure 5.2 Example of host connection

72 TDS 275 G2 March 1991

o~

5.3 Hardware descriplion

ES

‘

2) Simple pipe with one processor with different memory size:

[P]NODE Pipe:
ARC hostlLink:

("‘ . NETWORK simple.pipe

Do

CONNECT HOST TO Pipe[0]([link] [0] WITH hostLink
DO i = D FOR p-1

CONNECT Pipeli)[link)[2] TO Pipe[i+1] [link][1]
memory

SET Pipe(0]

DO i =1FOR Pp .
SET Pipe[i] (type, memory := "TBOO", 1*M)

{type,

This network is iflustrated in figure 5.3.

1= PTEO0%, Z*H)

pipe(0] pipe 1] pipe[2] pive(o-1]
H
g noszlink |, TBOO , ; TACD . TEQO ey TECO
T (24 _“} (1) (1) (181)

Figure 5.3 Simple pipeline with diflerent processor memory sizes

3) Square array with host interface processor;

VAL Up IS

0:

VAL Left I5 1l:
VAL Down IS 2:
VAL Right IS 3:
NODE HostSquare:
[p] {PINCDE Squara:
ARC hostlink:
NETWORK squara

DO

SET HostSquare (type,
CONNECT BOST TO HostSquare[link] [0] WITH hostlink
CONWNECT HostSquare[link][1l] TO '
Square{p-1}[p-1](link][Down]

O L = 0 for p
DO 4 =0 for p

Do)
SET Sgquare[i][3] (type.

72 TDS 275 02

IF

memsiia

= "T414", 2%M)

memsize

c= "TBOO™, 1*M)

March 1991

86 5 Configuring transputer networks

(1 = 0) AND (J = 0)
CONNECT EostSquare [link][Down] TO
Squara[0] [0] [1ink} [Dp]
1 =0
CONNECT Squarelp - 1][3J - 1)[link] [Down] TO

Square [0 103 1 [1ink] {Up]
TRUE

CONNECT Squareli - 1)(j}[link][Down] TO
Squara (4 1[3){1ink] [Op]

DO L = 0 for p
PO j =0 for p vt
IF [
3 = (p-1)
CONNECT Square[i] {3)(link] [Right} TO

Square[(1 + 1)\p] [0] [1irk] [Left]
TRUE

CONNECT Square[i) [j] [link]) [Rigkt] TO
Square[i)[3 + 1] [link]{letc]

5.4 Software description

The sohware ceszrnption s an 0CCaAM process, PAR or PLAZED PAR. with pro-
cesses anncia'sd by PRCCESSOR statements. These igenufy which processes
may be placez on particutar processors. The keyword PLAZED is retaineg tor
compatibility wtn earlier products; it 1s no longer requirect and has no ehect.

The RODEs whizh are referenced by a PROCESSOR statemen! may be either
physical processors il they are descnbed as part of the haroware descnption, or
logical processars if they are described as part of the sotiware description. If

the latter, they are mapped onto physical processors by means of a MAPP ING
section,

' Physical processor names are altowed here to simplify small networks, or those
which will not be re-mapped, so thal the programmer does not need to invent
two names for each processor.

The logical precessor names must be introduced first by means of NODE declara-
tions. These ook identica! to those used in the hardware description, but cannot
have attrioute setings. Since these mus! be visible to a following MAPPING
section, they muJst be declared outside the CONFIG consiruct. Channels which

are 10 be placec on ARCS by mapping statements must zlso be declarea outside
the CONFIG ccnstruct.

The process ‘nside’ the PROCZSSOR statement may consist of OCZam text.

72 TDS 275 02 March 1891

("

5.4 Software descriplion 87

Howaever, it is recommended that the code should be restncted to simple proce-
dure calls i.e. 1o separately compiled procedures, referenced as hnked compi-
lauon units using the #USE directive. Code which generates library calis is not
allowed.

A PROCESSOR statement assooates the process instance (process) it labels
with the iogica! or physical processor it names. The same name may be ref-
ererced in more than one PROCESSOR statement. The set of processes so
named will run in parallel on that processor.

Note: when imakef£ is used to build the program, any linked units refererced
by the sohware descnption must be given extensions|of the type cxx. Trus 1s
because imakef uses a ditferent convention tor file extensions to the normal
TCOFF file extensions, see chapter 21.

5.4.1 Libraries of linked units

The facility 1o create kbranes of inked units provides an easy method of targetung
a process at ditferent precessor types within a software description.

For example, suppose a precess 15 compied and linked once tor a T2 ard
once tor a T8 and tne knked unils are given imakef file extensions in craer
10 distinguish them. Referencing the two hnked units directly within the schiware
geccr:ption by #USE cirectives, will cause one o! tnem to hide the otner from ihe
configurer.

I, however, the linked urits are used to create a library and this is reterenced
by a single #USE cirective, the coniigurer will be able 1o extract the correct copy
of the process tor ezch PROCESSOR sialement it finds.

Only libraries contairtng hnked units may be relerenced from within a sghware
description.

5.4.2 Example

The following example of a sohware descnption, is for the pipeline soner pro-
gram introduced in chapter 4. The example 15 developed 1o show the complete
ccnfiguration description for the program, in section 5.6 Figure 5.4 illusiraies the
mapping of the sotware processes onto a network of logical processers, which
in this example is acnieved witnout an aciual mapping secton. This meinca of
mapping is explainec 1in secuon 5.5.4.

#INCLCDE "hostio.inc" == declares SP
#INTLUDE "sorthds-.inc" =-- declares LETTERS
72 TDS 27502 March 1991

Ba . 5 Configuring transputer networks

#0SE "inout,lku” ~= linked unit

#USE "element.lku” == linked unit

NODE incut.p : -- logical processor

[string.length])RODE pipe.element.p : -- logical -
-- processors (

CONFIG

CHAN OF SP app.in:
CHAN OF SP app.out:
PLACE app.in, app.out ON hostlink:
[string.length+1]CRAN OF LETTERS pipe:
PAR B '
PROCESSOR inout.p t -
inout (app.in, app.out, pipe(string.length],
pipe{0]) |
PAR i = 0 FOR string.length
PROZZISSOR pipe.element.p({i]
sort.element (pipe(i), pipe[i+l]}

Th:s exampe names a single precesses inout.p and an array of processes
pipe.elezent,p. Tneccoe may be magsped onto any haroware configurauon
onto wn:ch (rese logical processars may be mapped and wnich incluaes an ARC
declaraiion {z: tne host connection hostlink.

Pipa. [
pipe. alamank . \
alemant. Platring.
loout.p pic} langro-1) i
H pipe R
[atring. l
0 ___dencea-11f sort.
S leman !
T

pape[straing.length]

Figure 5.4 Pipeline sorer — mapping processes onlo processors

* 5.5 . Mapping descriptions . !

A MAPPING Structure is used if the user has declared logical processors. The
MAPPING mzaCs logical processars used in the sottware gescnption onie physical
processars used in the haroware description. It is possible to map any number
of logical precesseors onto any physical processor.

72 TDS 275 02 March 1991

5.5 Mapping descriptions] 89

The prionity at which a process runs may be determined as part o. Mmapping, if
that logical process does not explicitly include high priority code. This reflects the
fact that changes in mapping may no! affect the overall structure of the software,
but can ofien change the decisions made about which processes should be
pnontised.

IF, SKIP and STOP may be used in a mapping structure.

As would be-expected from the 0CCam scoping rules, logical processar names
must be declared as NODEs in the schiware descnption, belore tne cpening
keyword MAPPING of the mapping gescription. Each name so declarec must
appear once and once only on the left hand side of @ mapping nem. Pnys:cal
processars may appear on the nght hand sides of multiple mapping items.

The mapping structure tsell may appear either before or after the sohware de-
scrplion.

§.5.1 Mapping processes

Having geciared phys:2al processors, as pan ol'_the haraware descrpucrn, and
logica: processcrs, as pan of the scftware descripuicn, we can assigr logical

processers 1o phys:cal processors using the MAP slaiement.

MAPPING map
MAP logical.proc CONTO physical.proc

Wa can atso supply a list of logical processors 1o all be mapped onto the same
physical processor:
MAPPING map
MAP router.proc, application.proc¢ ONTO root.processor
This is exactly equivalent 1o:
MAPPING map
Do
MAP router.proc CHTO root.processor
MAP applicatien.proc CONHTO root.processor
And we can use DO replicators. and IF cONsiructs, etc:

MAPPING map

72 TDS 27502 March 1991

S0 5 Conliguring transputer networks

DO
DO i =0 FOR 10

MAP router.proc[i] ONTO router.processor[il]
PO i =0 FOR 5

MAP sieve.proc[i] ONTO sieve.processor (

If we require that the process’s priority be determined by the mapping, we can
use the optional PRI clause. The argument to PRI can be either 0 1o md1cate
high prionty, ar 1 1o indicate low prionity:

MAPPING map ! '
DO i = 0 FOR 10 '
MAP log.:.cal proc[i] ONTO physical.proc
PRI (INT (i = 0Q))

The configuration tacl will reject the mapping at high pnonty of a process which
isell incluoes a PRI PAR

5,52 Mapping channels

Channels berween processars need not be placed by the user. The configurer

will determene that a connecton exists, and will allocate all the channels to links)
it they are available. However, il a user wants to overnde the delault allocation, '
channels may be mapped onio named ARCTS. Also, channels connecung pro-
cessors 1o external EDGES must be mapped onto an ARC which connects to that
EDGE.

Channels are mapped onto ARCS in exaclly the same way as logical processors
are mapped onto physical processors. Two channels may be mapped onto the
same ARC, as long as they are used in different directions (the configurer will
check this). QObwvicusly the ARC must connect EDGEs of the processors onto
which are mapped the processes which use the channel.

EDGE perirheral :
ARC peripheral.arc :
NODE root.proc :
NETWORK n
DO
~- insert code to set attributes, then:
CONKZZT root.prec(link] [0] TO peripheral WITH
peripheral.arc

CHAN OF protocol to.periph, from.periph :

72 TDS 275 02 . March 1891

5.5 Mapping descripuons 91

HODE process :
CONFIG
PLACED" PAR
PROCESSOR process
-- reads from channel from.periph, writes to
-- channel to.periph

MAPPING
ale]
MAP process ONTO root.proc
MAP to.pexiph, from.periph .ONTO }:eripheral.arc

5.5.3 Moving code and data areas *

Two processor attnbutes may be used to provide greater control of the 1avout of
code ana data areas in memcry. Note that changmng the detault oraenrg means
tnat the INMOS aebugger cannat be used with the program, and for trs reasan
these atrnputes must be explicilly enabled on the command line by means cf the
"RE’ option.

Nommally the configurer arranges for the program’s workspace {o be gwen the
highest pronty, and nence placed at the lowest adaress on chip. Tris means
tnat the workspace can make best use ol the transputer's on-crup RAN Program
code 15 treated with next pnonty, and vectorspace has the lowes! pnenly.

These prionties can be overndden by seting two processor atnbutes
‘arder.code' and ‘'order .vs’, which correspond to the program ccae, and
to the program's veciarspace, respectively, These can be set to INT vawes,
where lower integers indicate a hugher prionty. The workspace is given pronty 0.
Hence setting ‘order . code’ to -1 means that the code will be placed a: a fower
acdress than the workspace. it an attribute is not set, the prionty is consicered
to have value 0. The retative ordenng of sections whose pnoriles are egual is
undefined.

Since these attributes are essentially properties of the users program, no! of the

hardware descnption, the settings must be made as pan of the MAFPING sec-
tion. However, the processor which is referenced must be a physical precesser,

72 TDS 275 02 Marzch 1991

g2 5 Conliguring transputer nefworks

.

Thus we ma, . a mapping section like so:

MAPPING prioritise.code
Do
SET physical.processor (order.code := -1)
MAP logical.processor ONTO physical.processor

It code re-ordering has not been explicilly enabled by the command line option
‘RE', these ainbutes will be ignored.

5.5.4 - Mapping without a MAPPING section
Without a mapping section a channel aliocation may be used instead of a channel
mapping.

Any channel in scope at the point where a process is labelled is available tor
explicit placement on an arc declared in the haraware network. This is done by
acding the 10".av.ing Allccation immediately after the declaraton of the channel:

CHAN OF pcetocol to.periph, from.peciph
PLACE to.ceriph, f£rom.periph ON peripheral.are :
CONTIG
PLRCEZD FAR
PROCZEZOR root.proc
== as before

.
.

Allowing more than one channe! to be placed in a single aliocation or mapping
statement al.ows the two channels on any one physical transputer link to be
placed in a single hine of code.

5.55 Mapping examples"

1) pipebne sorier on a single processor

MAPPIKG
DO
MAP incut.p ONTO MyB0OO4
DO i = 0 FOR string.length
- MAP oipe.element.p(i] ONTO MyB0O04

72TDS 27502) March 1991

Pt

5.6 Example: A pipeline sorler on four transputers 93

2) pipeline sorter on a nng of processors, one per process

MAPPING
DO
MAP incut.p ONTO MyBOO4
DO i = 0 FOR string.length
MAP pipe.element.p[i] ONTO ring[i)

5.6 Example: A pipeline sorter on four transputers

This section describes how the pipeline soner pregram, descrbed in secticn £ 12,
may be distnbuted over four T414 transputers. Each [processor has many pro-
cesses allocated to i,

An exampte of how to design and wnie a configuration descnption is given,
followed by detaiied instructions about how to compile, configure anc run the
program.

In the cenhiguraon descripion it 15 assumed gt there 1s a transputer NEwCy
of four T414 transcuters connecied as snown 1n figure 5.5 It goes nz: maner it
you don't have suzh a network ~ you should read through tius example and tnen
try moditying it for your network.

1rar_1snuler 0 transputer 1
osT sty B oy S
3 2
2 3
L
transputer 3 transputer 2

Figure 5.5 Netwark of four transputers

The 0Ccam source and configuration descnpton develcped in this examoie is
supplied with 1he toolset in the “exampies” girectory, and you shoula ¢ooy these
fites to a working cirectory in croer to build the program. Alternatvely you can

72 TDS 275 02 ‘arch 1991

| -

84 5 Conliguring transputer networks

»

type in the source of the program, as it is given below and in section 4,12,

Thae files are as follows:

sorthér.ine the comnion protocol definition.
element.occ the soring element.

inout.oce the interface to the host file server.
sortb3.pgm the configuralion descriplion for the network.

The contents cf the files sorthdr.ine, element . occ and inout .occ are

described in section 4.12. The contents of the olr‘er fies used in the program
are described below, ,

To complete the program the host file server library hostio.lib, the hostio
include fle hostio.inec, and the compiler library code will be used irom the
toolse! library directory.

The following code is in the file sortb3 . pgm, it describes the hardware network
shown above 2nd a mapping of processes onto this nemwork which puts an equal
number of processes on all processors aher the first one, which aisp gels any
remainder:

-~ problez size
VAL string.length IS B80:

-- hardware description
VAL number.of.transputers IS 4:
VAL number.ocf.elements IS string.length:
VAL elements.per.transputer IS number.of.elements/
number.of.transputers:
VAL remaining.elements IS number.of.elements\
number.of.transputers:

_ VAL elements.on.root IS elements.per.transputer +

remaining.elements:

VAL K IS 1024:
{4)NODE B223.%:
ARC hostlink:
NETWORK
DO
CONNEZT BOO03.t[0) [link] [0] TO HOST WITH hestlink
DO 1i=0 FOR 4
Do
SZT BO03.t[i] (type, memsize := "T41l4", 256*K)
CONNEZT BOO3.t[i]{link] (2] 7O i

727D8 27502 March 1991

T

5.6 Example: A pipeling sorter on four transputers g5

BOO3 .t [(i+1)\4] [1ink] [3]

-- mapping
VAL BIGH IS 0: -~ priorities
VAL LOW IS 1:
RODE inout.p:
[number.cf.elements]NCDE pipe.element.p:
MAPPING
DO
MAP inout.p, .
pipe.element.plelementa.on.xroot=-1] ONTO
BO03.t[0) PRI HIGH
DO i = 0 FOR elements.on.root-1 |,
MAP pipe.element.p(i] ONTO B0O03{t[0] PRI LOW
DO j = 0 FOR number.of.transputers - 1
VAL first.element.here IS5 elements.on.root +
(j*elements.per.transputer):
VAL last.element.here IS first.element.here +
(elements.per.transputer-1}:
Do
MAP pipe.element.p[first.element . here],
pipe.element.p{last.element.here] ONTO
BO03.t[3+1]) PRI HIGH
DO i = first.element.here + 1 FOR
elements.per.transputer - 2
MAP pipe.element.p{i] ONTO
BO0O3.t (3+1] PRI LOW
#INCLUDE "hostio.inc"
$INCLUDE “sorthdr.inc"
$0USE "inout.lku”
#USE "element.lku"
CONFIG .
CHAN OF SP app.in:
CHAN OF SP app.out:
PLACE app-in, app.out.ON hostlink:
[string.length+l)]CHAR OF LETTERS pipe:
FPAR
PROCESSOR inocut.p
inout (app.in, app.cut, pipe{string.length],
pire[0])
PAR i = 0 FOR string.length
PROCESSOR pipe.element.p(i]
sort.element {(pipeli], pipel[i+l])

72TDS 275 02 March 1991

.

96 . 5 Configuring transputer networks

In the mapping structure shown, the logical processors named in the sottware
descriplion are mapped onto the physical processors declared in the hardware
description. Note: that on each processor, processes which communicate on
external channels are mapped to be run at high prionty. The allecation ol pro-
cesses 1o transputers is shown in figure 5.6.

transputer 0

‘ transputer 3

elexzent~-—jelement

ransputer g
element f

Figure 5.6 Pipeline sorter processes

5.6.1 Building the program

The compone=:s of the pregram must be compiled in a bottom up fashion, First
compile the ssrung element using the following command:

o¢ element

72 TDS 275 02 March 19914

5.6 Example: A pipeline sorter on four transputers) 97

Because the file has a . occ file extension you can omit the extension trom the
fiename. The command line options to specify the largel processor and ermror
mode may also be omined because the defaults are required i.e. T414 and
HALT mode. The compiler will produce a file called element . tco.

Next compile the inputoutput process using the lollowing command:
oc inout (creates the file inout.tco)

Each of these files must now be linked. The files are linked in separate oper-
anons, together with any files they reterence. Each linking [cperation creates
a unit of code which may be loaded onto the transputer nemwork, accoraing 1o
configuration defined in the configuration descnption, |

To link element.tco use one of the following commands:

ilink element.tco -f occama.lnk {UNIX)
ilink element.tce /f occama.lnk {(MS-DOS/VMS)

Both of these commands will creata a file called elemert.lku Trne linker
incirect file occama . lnk contains the necessary reterences to the comper
lipranes. Trnis fle 15 suppiied with the toolset.

To link inout . teo use one of the following commands:

ilink inout.tco hostio.lib ~-f occama.lnk (UNIX)
ilink ipout.tco hostic.lib /f occama.lnk (MS-DOSAVNME)

Both of these commands will create a file called inout . lku.
Now configure the file sortb3.pgm which defines both the communication
channels between the processes and how they should be loaded onto the net-
work:

ccconf sortb3.pgm
This command will creale an output file called sortb3.cfb

To make the program runnable you must add bootstrap cooe. To do this use the
collector tool icollect:

icollect sortk3.cfb

The collector will create the file sortb3.btl

72 TDS 275 02 March 1891

98 . 5 Conliguring 1iunsputer networks

5.6.2 Running the program

The program in the file soxrtb3.btl may be loaded and run using the skip
lpader from the host via the oot transputer which is assumed to be connecled
by its link 2 to link 0 of the first iransputer of the IMS BO03J external network

One of the follawing command sequences should be used:
UNIX based toclsets:

iskip 2 ~e ~x |
iserver -se -ss -sc sortb3i.btl

MS-DOS and VMS based toolsets:

iskip 2 /e /r
iserver /se fss fsec sortb3.btl

To run the program on the transputer netwark which includes the root transputer,
use one of the following commands:

iserver -se -s5b sortb3.btl {UNIX)
iserver /se /sb sortb3.btl (MS-DOS/VMS)

The program will run unitil you type ‘RETURN' on its own. The ‘se’ option directs
ihe server to terminate If the pregram sets the error flag.

5.6.3 Aulomated program building

As with the s:ngie processor version of this program it is possible 10 automate
the building of this program with the Makelle generator tool and a suitable
~ MAKE progrem. The version of the configuration program supplied in the file
sortb3c.pgnis written using imakef file naming conventions. For example,
the linked ur:is are given file extensions of the form cxx.

.

To produce a Makefile tor the entire program type:

imakef sortb3c.btl
The Makefile generator will produce a file called sortb3c.mak containing a
MAKE descriazon for the program. It will also produce linker wndirect files for the
two compiled units which compnse the program; these will refer 1o any necessary
modules trom tne library.

To build the pregram run the MAKE program on the file sortb3c.mak and

72 TDS 275 02 March 1994

5.7 Use of conditionals in a conitguraticn 95

all the necessary compiling, inking and configuration will be done automatically.
For more information about MAKE programs see chaptar 21.

5.7 Use of conditionals in a configuration

Conditional constructs (IF) are permitled inside NETWORK, MAPPING and
CONFIG constructs. This makes it possible to create configuration descriptions
which ¢an be ‘conditionally compiled’ for different network structures.

! .
For example, while developing a program, it may be J{seiut 1o modify a pregram
1o bypass the root processor, so that an apphcation may I pinef 1 rieclly onlo
an application processor. The following, ratner trivial, exompuu dzmonstraies
this:

57.1 Example: Configuration using conditional IF

In this example, when a single processor 15 1n use, the application communicates
direclly with the host, as shown in figure 5.7. Wnen two processors are available,
a bufter process 1s loaded onto the root processor. This process butlers the
communicaton between the applcanon and the host. See figure 5.8.

application

rootlink 0 T41d

QX

Figure 5.7 Direct host conneclion

root applicataion

Td14 T414d

hastlink o 3 rootlink,o

—nOoxT

Figure 5.8 Communication via the root precessar

The implementation is sphit into the following hiles:

app.occ -~ the application
buff .occ — the bulfer process

72 TDS 27502 March 1891

-
mYyprog.py he configuration descriplion Lle PLACE f£s, ts ON rootlink : -~ Note that this } ‘rootlink’
-- not ‘bostlink’ :

ie content of app.occ is as toliows: FAR

IF
{(NCLUDE "hostio.inc" (“ (- number.of.processors -‘2
JSE "hostio.lib" CHAN OF SP £s0, ts0 :

PLACE f£s0, ts0 ON hostlink :

: . ESSOR t
OC application.process (CEAN OF SP fs, ts) Pngifiir pizzesstfso ts0, ts, £s)
SEQ . r ’ L
so.write.stzing.nl (fs, ta, "Helleo world"™) TRUE
s0.exit (fs, ts, spsa.success) SEIP

PROCZESSOR application
application.process{fs, ts) .

. | |

e content ol buff . occ is as follows: | ‘ : !
WCLODE "hostio.inc" , NODESs which are declarec, butl do not have any annbuLes set, are ignored when
ISE "hostio.lib" configunng a program,

10C buffer.process (CHAN OF SP £s, ts, from.app, to.app)

'CHAN OF BOOL stopper : 5.8 Summary of configuration steps
== This never tarminatas

so.buffer(fs. ts, from.app, to.app, stopper) To summanse, the steps involved in building a program that runs on a nemoark

of transputers are as tollows:
e content of mypzog. pgm is as follows: 1 Decide how your program will be distributed over the transpuiers in your

\ (network,
: == 1 when running, B

== 2 for developang

Xl number.of.processors IS 1

2 Wnte a configuration description for your program by:
IDE roct, application : _g P Y P9 Y

£ hostlink, rootlink

nbin r hardware n r
THORK) {a) Descrbing your hardware network.
Don_ . (b) Inserung PROCESSOR slatements into your pregram and accing
- . ny necessary mapping descnpuion. :
number.of.processors = 2 any necessary PRINg descnplio

DO . .

: ’ . 3 Compile all the separale compitation procedures that form the coae for
. SET root (type, memsize := "“T414%, #100000) each transpuier in a bottom up fashion
| CONNZZT root[link}[0] TO HOST WITH hostlink ’ : ’

CONNZZT i i i i . - .
==T root[link][3] TO :‘;gﬁl:‘-‘tg“ (i"nk] {0) 4 Link each conficuration procedure with its component parts inio a file with
TRUE eotlin : the name useg in §USE directives in the configuration source file,
|
CONNECT application[link] [0] TO EOST WITH roctlink : ; i i
SET applica:zion{type, memsize := “T414", #100000) | & Run the configurer on the configuration description file.

NCLUDE "f:ostio.inc“ 6 CO”ECI ‘he CCde USing icollect.
SE "app.cah® ~ . .
SE "bu<f.cak" 7 Load the pregram into the netvork using the host file server.
NFIG) . -
CHAN OF SP £s, ts : ; ! Steps 3 to 6 can be auicmaied by using imakef and a suitable MAKE program,

‘TDS 275 02 . " March 1891 72 TDS 275 02 March 1994

7

Aplicaciones

'Electrical and Electronic Engineering,

co

of parallel systems 1o reatise faull-tolerant implementations. Th
parallei programming languages and occam, in particuiar, as a.m
concurrency arising in real-tite control, l
usefi by control engineers for off-line appli
design [1} and training neural networks
therefore real-time, applications.

electrical, aeronautical, chemical, mechamical, environmental and medical. C

. ﬂ}e vaniety and scale of examples of control systems are equally wide o 1l
a;rcraft_, power station boilers, robots, greenhouse environments clect.'
domestic heating systems, insulin pumps and video recorders, I :

gen

produce a fast, accurate, well

and

producing the sequence of o

26
Transputer Appiications
M. Jane et al,, Fds.
108 Press, 1992

REAL-TIME CONTROL
APPLICATIONS OF
TRANSPUTERS

George W. Irwin' and Peter J. Fleming®

The Queen's University of Belfast, Belfast. UK.

‘Automatic Control and Systems Engineering, University of Sheffield, Sheffield. U.K

Abs.lruc!. The exploitation of the transputer and occam 1n real-time automztic conirol
engineering 1s described. Following consideration of the special nature of Ltrxo
'applu:auon 'durmin, hardware and software fealuzes relevant to real-u .
tmple‘mcnmtmn wte discussed, Mapping straregies adopted by coatrol engineers are
examined together with a4 detated consideration of pertinent granulant &l'ssur.s .';hm
paper concludes with a review of some successful applications chosen f{om rob;:l‘ ;
serospace, Kalman filtenny and instrumentation, i

liutroduction

. ICOP"OI Engineers use (ransputer-based systems to increase the execuuion speed of
0l software, 0 implement more sophisticated control laws and o exploit the potenual

ey also are autracted to
) eans of directly expressing
While transputer-based systems are also being
cations, such as computer-gided control system
[2], this paper deals only with on-line, and

Control techniques are applied night across the spectrum of engineering, including

sequently
c.g. fly-by-wire
City generators,

Typically, a control system must function a

crally rvolucs the ok SYSt L a number of levels. Loop control

gative feedback, perhaps with dynamic compensation 1o
-damped Tesponse which is resistant to exiemal disturbances
ystem being controlled. Sequential control is concerned with
perauons which a system should perform, such as the timed

rabust to changes in the s

rogra i i i i
program on a domestic washing machine. Supervisory control ensures that the overall or

A
|

G.W. frvin and P.J. Fleming / Real-Time Control 27

global objective of the control system is being achieved. The need for parallel processing
has arisen in both loop control and supervisory control applications.

In real-time digital control, amongst other functions, the calculation of controller
output must be performed within a loop sample interval of typically 5-20 ms, on the basis
of periodically sampled measurements. Despite the increasing computing power of
conventional sequential processors, this can be difficult 1o realise in a growing number of
cases. A modern real-time contro! system might typically involve algorithms for control,
simulation, optimisation, filtering and idenufication, in addition to simpler practical tasks
such as event logging and data checking. Clearly, the more complex thc algarithm, the
more difficult the problem of performing the necessary ca]culjtions in teal-time and it is
arguable that the pull-through of advanced control theory into! industrial applications is
often hampered by the amount of computation required. In addition, different applications
place varying demands on a real-time controller. For example, the sample intervals for the
control of electric motors will be short because of the small time constants involved.
Multivariable systems will add complexity to the control calculations since several control
signals must be calculated simultaneously and, in aerospace and nuclear control
applications, reliability is essential. Techniques such as expert systems and anificial
intelligence are finding increasing apphication n control, as in *jacketing™ software for
adaptive controllers.

The transputer has been readily accepted by the control engineering communily as
the most suitable computing element availabte for embedded paralle! processing sysiems.
This paper describes how control engineers have exploited ils special features. The special
nawre of the real-time control problem is outlined in the next Section. In Section 3,
hardware and software features of the transputer and occam, relevant to real-time
implementaton are discussed. Section 4 describes hardware and sofiware mapping
strategies adopled by control engineers when using transputers and Section 5 looks in some
detail at granularity issues whuch are highly pertment to this application domain. The paper
concludes with a review of some selected successful apphications ranging over such areas
as robotics, aerospace, Kalman {tltering and instrumentation.

2. Parallel Processing and the Real-Time Control Problem

It was pointed out in the [ntroduction that implementation of paralle! processing for
real-time control involves mapping tasks onio a parallel system which must compute the
control functions wutha a critically short time window. This is illustrated in Fig.l, where
filtering and control calculattons are computed first, secondary control functions processed
next, and, if there is suffictent processing tume available, it is mopped up by housekeeping
tasks. The important issue to note here 1s the scale of operations concerned when compared
with the more usual supercomputing applications of paraltel processing. The modest level
of task complexity and cnucally short time intervals demand special attenton to
implementation on MIMD machines.

Due to their flexibility and ability to operate on unstructured and unpredictable
operations and data, MIMD machines, such as the transputer, can deal with a wider range
of problems than other classes of parallel processing system. However, the designer must
play a direct and fundamental réle in successfully extracting the potential paralielism of the
problem and in evaluating the trade-offs involved. Performance benefits strongly depend

on the compute/communicate ratio [3]. This ratio expresses how much communication :

overhead is associated with each computation and clearly a high compute/communicate

28 G.W. Irvin and P.J. Flenung / Real-Time Control

ratio is desirable. The concept of task granularity can be also viewed in terms of compute
time per task: when large, the task implementation is coarse-grain; when small, it is
fine-grain. Although large grains may ignore potentiat parallelism, partitioning a problem
into the finest possible granularity does not necessarily lead to the fastest solution, as
maximum parallelism also incurs the maximum overhead, particularly due to increased
communication requirements. Because of the special nature of their problem domain,
control engincers are acutely aware of these widely appreciated tenets of paralel processing

and strive to match the granularity of their application to the hardware granularity of the
transpuler,

<= e >

Msasursmenis
Sampied

Conwal # Aciuavon
Signals Generalad

Filtenng and s ldawn'ﬁﬁcation: e I
Contral . Optimisation . Event Logging and | I

Cafculations and Simulation” i Da‘Ia 9"‘?"“('9 7

&

Fig.1 Real-time control computation window

3. Transputer Implementation of Real-Time Control

Conirol engineers view the transputer as a powerful processing element capable of
easy implementation in an embedded parallel processing system. Its primary language,
occam, is sufficiemtly high-level to permit clear expression of parallel software structures
while retuning the efficiency of a low-leve! language. The facility whereby parallel
software can be developed on a single processor and subsequently mapped onto a
multiprocessor system is appealing for embedded system developers.

To a certain extent, occam on the transputer removes the need for a real-time
operating system. It has a timer, manages I/Q and communication between processes using
the CSP mode! [4], handles interrupts on an event channel, provides constructs for
handling concurrency and offers one high-priority and one low-pricrity operating mode.

Another important difference between the transputer and other microprocessors is
its built-in scheduler which can schedule a process in one of its two priority modes.
However, having only two priority levels can prove restrictive for real-time control

application. Bakkers et al. [S] suggest that the sampling process of a control system may
. be divided into three categories;

Time-bounded processes, Time-limited processes, and Background and alarm processes.
Time-bounded processes include sampling and actuation gperations and must be scheduled

at specific instants. Time-limited processes are actions which should be scheduled to meet
their deadline such as control signal calculations, Background and alarm processes involve

G. W, frvin and P J. Flerung / Real-Time Controf) 29

operations of varying levels of pnority such as alarms, condition maonitoring, oplimisation
d event logging. . o _
“ A brfagkdcg;wn of these categories suggests a varety of levels of p'nomy rz?ng'l‘ng
from high priority, pre-emptive to 2 low level implemented by the 1r:l1)ns;‘:uter s ‘0“:2::223{;;
i | dated within the basic transpu
und-robin scheduler. These are not accommo)
:?)mbinalion and a number of real-ume kernels have been developed such as TranshRTi(sc
[6). In an attempt to retain efficiency, Welch [7] has proposed two s:: e;_'n “,l
im;;lcmcated in occam with an acceptably low level of overhead, to realise multiple, fix
iori i ic priori ling on transputers.
riority or multiple, dynamic prionty schgdu . _
P yThc inlerir)upt handling facility available on the basic uar{spuler-oﬁcam C(')m;»manon
is too rudimentary for many applications and it is ofte.n necesszlry to extend lhl? calyre.r
The provision of four links on the transputer immediately releases thedcon;?d zgf]:f:n
i - in its turn, generates a dem
om the restrictons of bus-based systems but, in 1 T
{':;ore links per processor. (Recently, David May of Inmos has identified ?rmﬁo; pou:::;;
icati ivi he three main concerns of parallel sys
communications speed and connectivily as i ncer (
developers. He suggests that processor power and communications spe_cd are _bcmg
effectively addressed by VI.SI designers but that connectivity requires sgecnal.attenuon)‘.
Typical transputer networks are shown in Fig.2. Topologics used 1n_control ar:éd n
general, small scale and, typically, conform to the 2-D array model. Pipelines are u

(a)
[0

(b

(c)

Fig.2 Transputer networks: (a) 2-D array; (b} pipeline; (¢} tree.

occasionally but attention must be pad to_lhc associated latency in pr:ccssmg ur;e ;)'hc
tree topology has received some attention in the com.cxt of processor farms (se(; . |gl. .r
Static task ailocation 18 used more readily than dynamic task allocation !JecausF of its ov\feh
run-time overhead. However, dynamic task allocation has‘becn ulsed i conjuncuon \:ﬂl
processor farms in an atempt to gawn {lexibility in' processing variable task sizes and also
to develop a generic system architecture for real-ime control.

30 G.W. Irvin and P.J. Fleming / Real-Time Conirol

Processor farm architectures consist of a “farm” of processors receiving instructions
from, and reporting back to, a controller. Each processor runs the same program (with data
dependel.ll b'ranches) and has a complete, but different, set of data. There is limited
communication between processors, although memory costs may be significant because
la.rgg amounts of storage are required on each processor. Dynamic task allocation is
reqm'red in l!us approach. It has been found that there is a significant performance penalty
associated with scheduling software overheads and increased communication requirements
which can prove unacceptable in some real-time applications.

» \JI ——
Master Worker ‘Worker | ____"" | Worker
Dgta | —= Data

Results

Resulls 4|

Fig.3 Processor farm arrangement.

Jones and co-warkers have investigated this at lengih and explored ways to reduce
the attendant overheads associated with the approach (e.g. {8].[9)). These include task
buffering and more fully exploiting the four-link communication provision by mapping the
groc]cssor farm concept onto a tree-like strycture, thereby reducing communication
r;::}::lr:;z;:?;;in;:: task allocation, of course, affords opportunities far the creation of

Thc. ca_ll for increased numbers of communication links per processor has, perhaps
been most insistent from control engineers striving to design high-reliability sysiems. Fo;’
example, Thompson and Fleming [10] make this point in their work on operationally
fault-tolerant, transputer-based architectures suitable for gas turbine engine control. The
replacement of the fixed four-link architecture in the new T9000 devclopmenl.with

multiplexing and “virtual channels” is one of the most eagerly awaited features of this new
processor for control engineers.

4. Mapping Strategies

!n common with other application domains, there is no standard
converting sequential software into parailel software to run on transputer 'ﬁ;cs’f:r‘:;reof:l:
attempt 1o develop a generic approach, based on the processor farm, has a.Iready' been
described abpvc. Another, (11], which exploits the regular natwre of many linear
control algorithms is dealt with in the next Section. Shaffer [12] describes a method

G. W, [rvin and P.J. Flenung / Reai-Tine Conirof 3t

for converting sequential Fortran code for turbojet engine control to C code to be
implemented on a Motorola-based multiprocessor system.

In general, the system architecture should be maiched to the control software.
Bakkers and van Amerongen [{3] demonstrate how parallelism may be extracted from
a robotic control problem by identifying various layers such as an interface layer, a safety
protection layer, a control law calculation layer, a supervisory layer, etc. This approach
is also appropriate for application areas other than robotics.

Many implementations use more than one parallelisation strategy to realise a
successful system, Functional parailelism is a commonly applied method (e.g. [14]) in
which individual tasks are associated with the different| control | functions (o be
implemented. Sequential and parallel operations must be itlr;miﬁcd along with their
interdependencies. This approach is susceptible o lead balancing problems where unequal
task sizes lead to an uneven distnibution of computational load across the individual
processors in the sysiem.

Some problems have an inherent regular geometrical structure which can be
exploited to extract parailehsm. This regulanty allows data to be distributed uniformly
across the processor array, each processor being responsible for a defined spatial area or
volume. Neighbouring processors will have to exchange data at intervals. In [15],
Ponton and McKinnel provide a good example of geometric parallelism and its use in
control.

Algorithmic parallelism anses when each processor implements a part of the total
control algonihm. In such a decomposition, data now flows between the processing
elements, increasing the commumcation load on each element in the array and
communication overheads can severely degrade performance unless care 15 taken. However,
an advaniage of this approach 1s that very little data space 1s required on each processor.
Many control atgorithms are regular in nature, e.g. the digital version of the state-space
dynamic ¢ompensator

z(k+1) = Gz(k) + Hy(k)
utk) = Ca(k) + Dy(k)

(where, u, z and y represent the control, compensator state and measurement vectors
respectively; and a variety of techniques have been developed to generate parallel
reahsations. Two classes of method are appropriale for transputer-based systems: state-
space based methods and systolic algorithms. An example of the former class 1s described
in the next Section.

Systolic arrays provide a fine-grained description of the concurrent computation
involved in rfegular, matrix-based control algorithms {16}, [17]. Onginally intended
for implementation on fine-grain, dataflow archilectures, lrwin and co-workers
[18].{191 have evolved a method for aggregating systolic cells suitable for
imptementation on the medium-grain architecture of the transputer. First, a systolic
algorithm is devised 10 implement a solution 10 a particular problem. This will be realised
by a number of cells, each with a simple processing rdle, acting in parallel. While a large
number of cells may be involved, linked in a regular fashion, only two or three types of
cell will be used. This provides a parallel framework which may be suitably grouped and
cast onto a transputer network. This establishes a generalised mapping technique which has
been successfully applied to Kalman filtenng (see Section 6 on Applications).

32 G. W, Irvin and P.J. Fleming / Real-Time Controf

5. Performance Issues

In view of the importance of matching task granularity to processor granularity to
obtain efficient performance, Garcia Nocetti and Fleming [11] have developed an on-line
performance analysis environment, EPICAS (Environment for Parallel Implementation of
Control Algorithms and Simulation). The de facto standard control system design package,
MATLAB [20], has been integrated with the Transputer Development System (TDS)
(see Fig.4). This environment offers the control engineer a number of software tools for
automaling the implementation of control algorithms and simulation of systems on
transpuier-based architectures, The tools ate used to map sysiems onto transputer
architectures of different sizes and topologies, and to evaluate strategies by displaying, on-
line, task allocation, processor activity and execution time data.

Operating on a control law entered into MATLAB, a solution based on a parallel state-
space strategy maximises the parallelism available by modifying the algorithm into a set

MATLAB TOOLS OCCAM TOOLS

r ™
[MATLABENVIRONMENT | TRANSPUTER DEVELOPMENT SYSTEM

Discreusation Parailel

5.8
Sints-Space Pata

Representsnan

tranafer _——/

[Task Allocation

Matlab/Occam
Slrategies

Interface

4

... Parallel ?
State-Spacel
I Equations |
. 4

Dynsmic allocation
FARM TOPOLOGY
Stanc allogatuon
STAR TOPOLOGY

funclhicna

Fig. 4 EPICAS - Environment for Parallet Implementation of
Cantrol Algorithms and Simulation

of independent tasks, using a state-space model of the system. The input-output relationship
for each input-output pair is obtained and expressed in block-diagonal, state-space form.
This is reduced to a set of low-order, stale-space equations which may be executed
concurrently.

This parallel control law description is transferred into TDS where a toolset, writien
in occam 2, is used to automate the mapping of control algorithms onto a number of
transputer lopologies, using both static and dynamic task allocation strategies. Actual
execution limes, processor activity and task allocation are monitored on-line, enabling
direct assessment of various sitategies and topologies.

In [11] there is an extensive study of granularity issues with respect to T4 and T8
versions of transputers, where it is clearly established that, unless sk sizes are suificiently
large, ancreasing numbers of transputers affords linle improvement. Indecu, o processor

G.W. Irvin and P.J. Flemung / Real-Time Control 33

farm example shows that, for certain sizes of system, an increase in the number of
processors actually leads to a deterioration in performance.
Maguire [21] has extended the compute/communicate ratio, R/C, where

=

= length of run-time quantum (secs)
T length of communications overhead produced by quantum (secs)

to include information relevant 1o both the algorithm and the pardware}
i

task computational requirements (no. of operations) i
communication requirements of task {no. of bits)
processor computauonal performance (ilops)
processor communication performance (bits/sec)

R.
C

This is a valuable move o express task granuianty with respect to processor granularity.
He proceeds 10 obtain the following measures of processor granularity;

T414 0.005
T8O 0.075
TI000 ¢.3125 (estimated}.

These figures support the observauons (| 1] that larger task sizes are required to realise
efficient performance on T8 series processors and serves (o indicate the mapping changes
which must be anucipated for the T9 seraes.

Of course, such measures do not convey the whole story. For example, inter-
transputer commumnication 1s more efficient when longer messages are sent rather lhan_ a
targe number of small messages. Having introduced, then, the notiens of task gra.nula'my
and processor granulanty it is further worth investigaung "commumcauor}s granularity”
[22] where commumications speed and the handling of message size varies from processor

10 processor,

6. Applications

This section describes the work done on transputers in a2 number of important
application areas. |t will, of necessily, be brief and the reader is referred to the references
for more detail.

6.1 Robotics

Robot control functions range through a number of levels; from decision making,
path planning, and coordination at the top level to joint angle control at the bottom level.
The computational requirements of high speed, high bandwidth, adaptive systems makes
this area ripe for the exploitation of transputer technology.

Mirab and Gawihrop [23] review work on the application of parallel processing
for calculation of the dynamic equations of robotic manipulators. Jones and co-wnrkers
[8].[9] report on the use of transputers in computing the Newton-Euler formulaton of the

M oad s

34 G.W. Irvin and P.J. Fiemung / Real-Tune Control

inverse dynamics. They suggest a granularity mismatch, this particular problem being more
suited to a fine-grain architecture. Their wark is further aggravated by the use of a
processor farm topology for which they propose hardware improvements.

Daniel and Sharkey [24] draw attention specifically to the heavy computational -

demands of force control and to the need for a controller which is capable of switching
easily between different layers in the control hierarchy. It is argued that latency is a key
factor in the determinauon of a suitable transputer-based system architecture and they
advocate their "Virtual Bus' solution.

Hardware and software issues for real-time control of a fast assembly robot are
under investigation at Twente University [25]‘ The proposed control system is made up
of several layers. The first consists of the intérface hardware and its matching real-time
sampling software. The second layer contains the protection software which is essentiat for
maintenance and fault diagnosis of the system during operation. The third layer contains
the control algorithm and the necessary communication software for communicating control
variables between different parts of the contro! algorithms.

Arising from this work several new hardware and software components have been
devetoped. These include the LINX backplane, based on specifications for the VME
standard with 8 slots for transputer boards and two linkswitch boards, standard transputer
sections for use on all [/0 boards cailed TRAS and a real-time language TASC (Transputer
Application generator for Sampling applications in Control systems) which is an application
generator allowing the control engineer to specify the sampling programme in a high level
language. It permits independent control over all aspects of control processes such as
timing, communication, control of interface hardware and error handling.

The transpuler 1s emplayed as the prime architecture in a large mobile robot
programme at Oxford University [26] largely because 1t adapts sc easily to a distributed,
reconfigurable sensing and control strategy in addition to providing powerful onboard
processing capability. A transputer based sensor with local intelligence forms the basis for
networks of distnbuted sensors together with an integrated path for combining the
information from different sensors, For control, a distributed architecture overcomes the
bottlenecks associated with a centrahised controller.

Japanese rescarchers are also showing an increasing interest in transputers. The
Electrotechnical Laboratory, Tsukuba Science City is studying the use of the transputer as
a umbied processing base for operations ranging from sensing and actuation [27] across
to intelligence and manipulation skills. The aim is 10 produce a viriual environment for
teleoperation tasks [28). Transpulers are also being used in force and precision
controllers {29} and multiple, mobile robot applications. At Tokyo University, four
robots, with on-board embedded transputer processing, are used 1o manipulate objects
cooperatively, with planning and supervisory control being carned out by a central network
of transputers.

6.2. Motors and Generators ~

Variable speed drives are used in applications like machine tool drives, traction,
paper and steel mill rollers where rapid changes in lorque are required. Although the
induction motor has practical advantages over the more commonly used d.c. mator, it
requires a more complex control structure since the voltage, current, torque and speed are
all interdependent, leading to a highly coupled, nonlinear control problem. The computing
load demanded by ac machines has prohibited their application in this domain.

G.W. Irvin and P.J. Fleming / Real-Time Control 15

Jones et. al. [30] and Asher and Sumner [14] have inve'stigaled whether
transputer-based systems can provide sufficient real-time control computing power for the
ac induction motor to be an attractive allernative to dc machines. Different control scht?mcs
based on the application of functional decompaosition are describqi in [31]. The relatively
slow interprocessor communication of the transputer, however, limits performance alil.lough
its ease of implementation affords the designer valuable insight into thc. potcnue.xl of
paralielism. It is inferred that a parallel processing scheme is likely to ylel.d a viable
solution - perhaps the new generation of transputers with planned order of magnitude faster
link communications will fulfil this promise. i } .

Real-time adaptive control of the terminal voliage andispeed of a generator using
a self-lning regulator (STR) to adjust the excitation is discussed n [19]. The exisling
controller, for a laboratory scale turbogenerator, is implemented in C on an [BM PC-‘AT
compatible machine wilh a numeric coprocessor. With a reduced form of the Generalised
Minimum Variance algorithm, the fastest rate at which the control signal can be up_da_ted
is 20ms. However, to meet industrial standards, this ime must be at least halved. Timing
results on a real-time occam simulation of the turbogenerator system suggest that this target
can be comfortably met with the controller implemented in occam on a _single T8O
processor. Indeed, the power of the transputer is such that the anoruhm_usclf can be
improved by employing a 9-parameier ARMA model which includes noise parameter
estimation and a consequent improvement in performance. More recent laboratory test
resulls suppon these simulation conclusions [32].

6.3. Kalman Fileering

Systolic arrays provide a fine-grained descripuion of the concurrent comp'utation
involved 1o regular, matnx based algorithms ke Kalman filters. Magwire and Irwin [18)
describe how systohc Kalman fillers can be realised on transputer arrays and make
comparisons with a heunstic partiioning approach using Gantt charts. The systolic square
root covariance filter is found to provide the most efficient implementation because of the
close match between the systolic algorithm and the hardware architecture.

Related work [33] on transputer implementanen of tracking Kalman filters, where
an Extended Kalman filter is used for sonlinear state estimation, involves hineansauon by
updaung a Jacobian matrix. Not unexpeciedly, this research demopstrates thag cxp}oumg
the structure of the system malnces allows a substantial reduction in the llemllqn ume as
compared with the more generally applicable systolic mapping approach, fnlEl'Csl.lngly, the
iteration times of the transputer based tracking filters compare favourably with results
obtained on the WARP processor quoted more recently in the literature {34].

Atherion et al. [35) employ a parallel processing system to track multiple targets
arising from radar measurements. When targets are in the vicmi!y of one anther {for
example, when they cross) multiple tracking algorithms must be activated to monitor lgck
development. This potentially very demanding computational problem 1s best met using
parallel processing. An interesting problem here concerns the optimum number of
processors required, since the maximum computational load ts dependent on the worst-case
aumber of simultaneous Larget Crossings.

6.4. Aeraspace

In an early Demonstrator Project, in collaboration with Royal Acrospace
Establishment, Bedford, Fleming et al. {36} explored software and hardware mapping

36 G.W. Irvin and P.J Fleming / Real-Time Control

strategies for the implementation of an existing flight control law - the Versatile AutoPilot
(VAP). This study inspired the automated control law mapping environment (EPICAS})
descnibed earlier. The hardware solution involved four transputers in a "star” master-slave
configuration and employed static task aliocation. Simpie fault scenarios were investigated
and occam software solutions proposed. The Project was concluded with successtul in-tlight
testing of the parallel processing flight controlier interfaced with VME bus-based hardware
onboard the BAe 1-11 test aircraft at RAE, Bedford.

Virk and Tahir [37) examine the probiem of real-time, linear quadratic, optimal
control of an advanced mulitary aircraft with fast dynamics. The amount of computation
involved in linearising the aircraft equations about the current state and control vectors has
conventionally forced a number of simplifying dssumptions like ignoring the cross-coupling
between the longuudinal and lateral dynamics and assuming that the aircraft is time
invanant over small time intervals, They formulate two opumal control problems for the
lineansed aircraft, cuiresponding to the lateral and longitudinal dynamics respectively, and
account for the cross-coupling either explicitly, or imphicily in a modified control effort,
and solve two decoupied sub-problems on a transputer network. The algorithm avolves
linearisation of the equations of motion, integrating Riccati equations in reverse time,
computing the controls and updating the state vector. Functional parailelism is used, with
1 transputer respanginie for the longitudinal computation and the other handling the lateral
calculations. A number of methods for off-loading some of the calculations onto a third
processor are also investigated. The parallel autopilots are tested on a transputer based C
simulation of the aircraft and it 1s demonstrated that real-time control can be achieved with
a fast linearisation update as required.

~

6.5. Fault Tolerant Systems

Clearly, a parallel processing system has great potental for fault-tolerance.
However, it must be recogmised that such a system will tend 10 be less rehable than a
uniprocessor system since i generally has more elements. it only becomes more reliable
if 1t can detect a fault and take correcttve acton, possibly by circumventing the defective
sub-system and reconfiguring us soltware.

Thompsen and Fleanng §38] use exasting fault tolerant techniques 1o evoive an
operationally faull tolerant transputer-based architecture suitable for gas lurbine engine
control. A system topology, constrained by the dual-lane configuration of gas turbine
engine coriratters, 13 devisest in 1 way in which the majority of fauils are detected, located
and maske:dt by wmeans of a three-way vote, consistent with the conventional triplex
approach. Uiy draw atlention to limutations of the present transputer generation 1n
devising their scheme. '

Fault tolerant flight control involves reconfiguration of the flight control law after
actuator failure to mamiain flight conditions as close as possible to those of the unfailed
system. To implement reconfiguration of the control, it is necessary to compute the
control-mixer gain matrices which distnibute the forces and moments of the failed surface

-to the remaming, stil! functional, surfaces. Virk and Tahir [39] give results to show that
real-ume performance of such a fault tolerant design can be achieved on a transputer
network for an aircraft model supphied by British Aerospace (Military Aircraft Ltd).

The possibulines and limatations offered by transputers for hardware fault tolerance
are discussed in [403}. 1t is shown that the avallability of muluple communication links
and a hardware scheduler are atiractive for this purpose. Fauit tolerance for a single
processor implementation of a controller is treated, with transient and permanent fault

G.W. Irvin and P.J. Fleming / Real-Time Control 37

detection and correction discussed for the CPU, memory and I/O in turn. Thc addition of
a second or third processor in cold, warm, hot or active back-up conﬁguralmps makes 1t
possible to achieve high availability or high safety in the event of a transputer failure. More
complex control algorithms are implemented on mulllproqessgr. systems where the
significantly increased probability of failure 1s off;el by the availability of more processors
to take over the tasks of the failed processor. While hardware fault lulu?lm::: 15 sl based
on the use:of back-up, additional problems arise and recovery control is more wmplex.
These issues are examined and a flexible, multiprocesso_r, fault tolerant kernal is described.

Holding et. al. [41] consider software engineering met 0(!5 for [ht? dcsng'n‘of real-
time concurtent software, An integrated approach for the esign of un.u:-cnueal .and
system-critical software systems using Petri nets and temporal Icfgnc is descqbcd. Pem netf
models of the software constructs in occam are discusseq together with the mlr'odu_ctlon o
fault tolerant techniques for ruggedising the implememauo;? software. The a:pphcanon area
for this research is a new generation of flexible machinery in wh1ct_\ mechanical complex.lty
is traded for sophistication in control. Thus, mechanical transmissions used o synchronise
actuator motions are replaced by sets of independent, electromechanical dnves operating
under software control.

8.6. Real-time Simulation

Ponton and McKinnei {42] report on the application of transputers to the real-llpe
simulauon of process plant. The goal 15 to exploit the benefits of a faster model solution
to include not only steady-state conditions but also dynamic simulation. The latter emp!oys
complex nonlinear models typically consnglvi_ng of a set of several thousand ml_xed
differential and algebraic equations. Three different p(oblem areas are discussed and it 15
interesling to note the approaches to parallelism used in each case. .

For real-ume simulation of a disnllation column, geomglncal parallelism 1s used 1o
partition the distillation column into secuons and place each on its own transputer. To m:'lke
the transition from senal sunulation code to parallel as simple as possible a modelling
toolkit has been produced which runs on a 12 transputer Meiko surface connected 10 a Sun
Sparcstation. Solution of the nonlinear algebraic equations 1s the key numerncal problem
in process plant simulatuon. A new algorithmic dccomj)qsmon _lcchmquc based ﬁn
decomposing the equation set by "pam[iompg and teanng” is applied to calculaung the
pressures and ftows of an incompressible fluid in a pipe nelwo;k consisting of 113 n'(Jdes,
123 pipes, with 59 unknown pressures. A number of solution strateges, including a
master/slave paradigm, are compared for solving the assocmtefi system of Imc?ar equations,
evaluating the nonlinear function and updating the Jacobian. Finally the mapping technique
is extended to cover the dynamic case.) _ -

Mapping onto transputer arrays is generally difficult and can involve the evaluation
of a number of alternative strategies for a particular application \»trh:ch can be both
expensive and time consuming. Ponton and his co-workers have built a model of the
parallel application as an extension to the Simula programming language which allows the
user to construct a model of a parallel program executing on a parallel computer.

6.7. Instrumentation

Non destructive testing (NDT) is used in industry to detect fap[is in products in
order to provide a degree of quality assurance. Reference [43] describes an instrument

PR

18 G.W. Irvin and P.J. Fleming / Real-Time Control

in which the parallel processing potential of the transputer is applied to electromagnetic
eddy-current NDT of defects in wbular metal samples '

In the present instrument three fawlt conditions are recognised; a defect free sample,
a sample with a defect on the inner wall of the tube and a sample with a defect on the outer
wall of the tube. The probabilistic approach employed uses a set of Kalman filters
corresponding to the set of likely fault conditions.” These are implemented on separate
processors, together with an appropnate probability update mechanism.

Using 20MHz T800 transputers it is possible to obtain sample feed rates of 1.9m/s
with the current 2 mm resolution of the coil system which surrounds the sample under test.
This is approaching the production line rates of metal tubing and hence presents real
possibilities for an online quality assurance system.

Transputers have also been reported to provide a flexible and cost effective signal
processing base in an instrument for real-time particle flow metertng [44]. The main
applications for such an instrument include monitoring the particle concentration of effluent
gases in industrial processes and control of the flow from spray guns in the electrostatic
particle coating process.

7. Conclusions

The transputer has been readily accepted by the control community for embedded
parallel control systems and a broad range of successful applications has been reported.

This experience has 1denufied a number of technical limitations for this application
domain. The bulli-tn scheduler has only two priority levels, the interrupt handling facility

on the basic occam-transputer combination is rudimentary and the number of links per

processor limils connectiviiy.

Acknowledgements

George Irwin wishes to acknowledge the support of the Science and Engineering Research
Counail, the Royal Signals and Radar Establishment, Malvern, Short Bros. Plc, Betfast and
the IFI Institute of Advanced Microelectronics for some of the work reported here.

Similarly, Peter Fleming acknowledges the support of the Scieace and Engineering .

Research Council, the ESPRIT Paraltel Computing Action, Royal Aerospace Establishment,
Bedford and Smith's Industries.

Reflerences

[1] A.J. Chipperfield, T.P. Crummey and P.J. Fleming, Decision making in CACSD:

multiobjective optimisation and parallel processing, JEE Colloquium Digest on “The
-Control Faciory®, 1991,

[2] A.E.R. Ruano, Applications of neural networks 1o control sysrems, Ph.D. dissertation,
University Coilege of North Wales, 1992.

{3) H.5. Stone, High Performance Computer Architectures, Addison Wesley, 1987,

G.W Irvinand P J. Flenung / Real-Time Control 19

[4] C.A.R. Hoare, Communicating sequential processes “CSP", Comm ACM, Vol. 21,
1978, pp. 666-677.

[5] A.W.P Bakkers, R.M.A. van Rooij and L.James, Design of a real-time operating
system (RTOS) for robot contral, Proceedings of the 7th Occam User Group, 103 Press,

1987, pp. 318-327.

[6] H. Thielemans and E. Verhulst, Implementation issues of Trans-RTXc on the
transputer, Proc. IFAC Workshop on Algoruhms and Archuectures for Real-Time Control,
Bangor, UK, 1991. | l

i
[71 P.H. Welch, Multi-priority schedulers for transputer-based r‘efl.l-lime control, Real-Time
Systems with Transputers, 108 Press, 1990,

[8]1 D.1. Jones and P.M. Entwistle, Parallel computation of an algorithm in robotic control,
Proc. 1EE Int. Conf. Comtrol "88, 1988, pp. 438-443,

[9] P.N.F, da Fonseca, P.M. Entwistle and D.L. Jones, A transputer based processor farm
for real-time control applications, Applicarons of Transputers 2, 108 Press, 1990, pp. 140-
147.

Fault tolerant transputer-based controller
[10] H.A, Thompson and P.J. Flemung,
configurations for gas turbine engines, (EE Proc., P D, Yol. 37, 1950, pp. 253-260.

[111 D.F. Garcia Nocew and P.J. Fleming, Puralle! processing in digual control, Springer
Verlag, 1992,

[12] P. Shaffer, Expertence with implementation of a turbojet engine control program on
a muluprocessor, Proc. Amercan Control Conference, 1989, pp. 2715-2720.

[13] A.W.P. Bakkers and J. van Amerongen, Transputer based control of mecratronic
systems, Proc. 13ih 1FAC World Congress, Tallinn, 1990

G : i d the transpuler for real-ume high
[14] G.M. Asher and M.Sumner, Paralielism an
performance control of a.¢ waduction motars, IEE Proc., Pt D, Vol, 137, 1990, pp. 179-
188.

[15] J.W. Ponton and R. McKinnel, Nonlinear process simulation and control using
transputers, IEE Proc., Pt. D, Vol. 137, 1990, pp. 189-196.

[16] F.M.E. Gaston and G.W. irwin, Systolic Kalman filtering: an overview, IEE Proc.,
Pt. D,.No. 4, 1990, pp. 235-244.

[17] F.M.F. Gaston and G.W. Irwan, A systolic linear quadratic opumal controller,
Eleciromcs Letters, Vol. 26, No 14, 1990, pp. 1600-1002.

[18] L.P. Maguire and G.W.Irwin, Transputer implementation of Kalman filiers, IEE
Proc., Pr. D, 1991, Vol. 138, pp. 355-362.

[19] L.P. Maguire and G.W. Irwin, Parallel adaptive control, Proc. 1st European Conirol
Conf., Vol. |, Grenoble, France, July 1991, pp. 550-596.

40 G.W. Irvin and P.J. Flemung / Real-Time Control

204 C..Mo]er, MATLAB User's Guide, Department of Computer Science, University of
New Mexico, Albuquerque, USA, 1980,

[21] L.P. Maguire, Parallel architectures for Kalman filtering and self-tuning control, PhD
dissertation, The Queen's University of Belfast, 1991.

[22] G.1. Dodds, Personal communication, 1991.

[23] H. Mirab and P.J. Gawthrop, Transputers for robot control, Proc. 2nd Internasional
Transpucer Conference, Antwerp, BIRA, 1989,
!

[24} R.W. Daniel and P.M. Sharkey, The lra.nsputcr‘contmi of a Puma 560 robot via the
virtual bus, Proceedings IEE, P1. D, 1990, Vol. 137, pp 245-252.

[25] A.W.P. Bakkers, I. Meijer, J.C. Musters and H.G. Tillema, Real-time robotic control
using transputers, in Transpurers for Real-Time Control, eds. G.W. Irwin and P.J.
Fleming, research Studies Press, Chapter 3, 1992,

[26} .M. Brady, H. Durrant-Whyte, H. Hu,]J.Leonard, P.J. Probent and B.5.Y.Rao,
Sensor based control of AGV's, IEE Computing and Control, 1989.

[27) T. Ogasawara and G. Dodds, Transputer based simulation of a tele-operated
manipulator, Proc. Sth Annual Conf. of the Rabotics Sociery of Japan, Japan, 1991,

[28] T. Suehrio et. al., Task coordinate servo system for a manipulator using the
transputer, Proc. Japan Rubonc and Mechatronics Conf., Japan, 1991, pp 5-9. (in
Japanese)

[29} K. Kodzito et. al., A controller sysiem for an ulira precision stage using mulli
transputers, Proc. 30th Annual Conf. of the Suciety of Instrument and Control Engineers,
Japan, 1991, pp 161-162. (in Japanese)

[30] D.L. Jones and P.J. Flemmng, Controi applications of transputers, in Parailel
Processing in Control - the transputer and other Archiectures, ed. P.J. Fleming, Chapler
7, Peter Peregrinus, 1988,

[31] P.M. Entwistle, Paralle} processing for real-time control, PAD dissertation, University
College of North Wales, 1990,

[32} M.D. Brown, Transputer implementation of adaptive control for turbogenerator
systems, PhD dissertation, The Queen’s University of Belfast, 1991,

(33] R.J. Kee and G.W. Irwin, Transputer implementation of tracking Kalman filters,
. Proc. IEE Int. Conf. Control *91, 1991, Vol, 2, pp 861-866.

[34] R.S. Baheti, D. R. O'Hallaron and H.R. Itzkowilz, Mapping Extended Kalman filters
onto linear arrays, JEEE Trans. on Autemartic Control, Vol. 35, No. 12, 1950, pp 1310-
1319.

[35] D.P. Atherton, E. Gul, A Kounizeris and M. Kharbouch, racking multiple targets
using parallel processing, /EE Proc., Pt. D, 1950, Vol. 137, pp 225-234.

G.W. Irvin and P.J. Flerung / Reol-Time Conirol 4]

[36] F. Garcia Nocetti, H.A. Thompson, M.C.M. de Oliveira, C.M. Jones and P.J.
Fleming, Implementation of a transputer based flight controller, (EE Proc., PL. D, Vol.
137, 1990, pp 130-136.

(371 G.S8. Virk and J.M. Tahir, Parallel processing for real-time ﬂ?ghl control, in
Transputers for Real-Time Control, eds. G.W. Irwin and P.J. Fleming, Chapter 4,
Research Studies Press, 1992.

[38] H.A. Thompson and P.J. Fleming, Fault tolerant lranspu(elr-based controller
configurations for gas turbine engines, /EE Proc., F1. D, Voﬂl. 137, pp 253-260.

{39] G.S. Virk and J.M. Tahir, A fault tolerant flight comrol; system, Proc. Ins. Conf.
Control '91, Vol. 2, 1991, pp 1049- 1053,

[40] R. Cuyvers, R, Lauwereins, C. Caents and J. Peperstraete, Hardware fault tolerance:
possibilities and limitations offered by transputers, 1n Transpu{ersﬁ)r Real-Time Con.r:rol,
eds. G.W. Irwin and P.J. Fleming, Chapter 8, Research Studics Fre. s, i,

(411 D.J. Holding and J.S. Sagoo, A formal approach to the software canlivi of high spccd
machinery, in Transputers for Real-time Conirol, eds. G.W. Irwin and P.J. Fleming,
Research Studies Press, Chapter 9, To appear 1992

[42] J.W. Ponton, E. Fraga, R. McKinnel and N. Skilling, Simulation of non]in_ear
chemical processes and control systems using lransputers, in Transputers Jor Real-Time
Control, eds. G.W. Irwin and P.]. Flemmg, Chapter 2, Research Sludies Press, 1992.

{43] M.R. Bahramparvar and J.Q. Gray, Apphcation of parallel processing techniques to
eddy-current NDT instrumentation, JEE Proc., Pt D, 1990, Vol. 137, pp. 211-224,

{44] E.Mills and B.C.Q"Neill, Particle flow instrumentation, wn Applications of transputers
2, 1990, 10S Press, pp 56-62.

102
) Transputer Applicanons
M. Jane et al., Eds.
108 Press, 1992

Transputers in Image Processing

Peter E. Undrill.
Department of BioMedical Physics and Bioengineering
University of Aberdedn, F oresterhill, ,
Aberdeen AB9 2ZD, Scotland, UK

:l\hatract. T‘hcAudvcnt of the INMOS transputer serics of processors enahled the
image processing speciahst to eXperience computational power far in excess of
that normally provided by convennonal computing systems. This review looks
at a nn‘ge of image provessing lasks addressed by the transputer using
community, identifying some of the benefins and ditficulues within thew
apphcauons, and auempts 1o look towards Opporunities in the future.

L. Introduction

W, ,
€ may communtcaie by the writien word but our thoughts are puided by i ges’

2. Fundamenia) Concepts

Computational image

: processimg can be defined as th “matica
functions o mumage ¢ operauon of mathematical

process ot am pcrccgtr;s:m::tmns of pictonal scenes. In general it 1s part of an overali
the cssemul commnet or'. patiern re'cogmnon and tmage uaderstanding. These form
13545 Forumpo compute‘r vISIon. Aspects of each are described in detaii in
commiti procen g'sslomcz:ieegrac"e:séggmg ::oncggtualty;arllher simpler than many of the

. uter vision and has been the subject of rather
:g:ﬁezzftncql and successful effort. Whilst it may be of scientific in[t‘rejsl to exploit
i i]CS in the pursuit of perception, the objective basis of image processing is o

apply an algorithm to a representation (usu igi i
' ally d
result which provides added valye to: 7 g1l ofa vial scene to produce a

b lI:‘Jnderstanding through quantitation,

" erception through an improvement in a chosen ind i

: _ ex of quality.
Efficiency through tmproved image coding. ¢ ’

2.1 Image Analysis

The goals of image anatvsis can take 3 variety of forms:

- A i M
DA Ic'om;:_h_:le SymPOllC description of an image at an adequate leve! of abstracion.
Ist of interesting events, or objects, occuming within the image.

. A descrlpllon Of Chan -
BES which lla\f OCCuued wee ucce:
bcl cen s SSIve IECOIdIIIgS of

P.E. Undrilt / hnoeee Processing 103

" The first of these definitions allows us some flexibility in the chosen level of

abstraction. In image processing we will normaliy be operating at the lowest level. which
names regions, pixels or lines and auributes charactenseics At higher levels we begm 10
bring in knowledge of the imaged domam.

As an example, Fig. | shows an image tohen from a kigh resolution bram scan
using magneli¢ resonance imagmg. Applying a method such as that described [4] we
could say (right Aleft o1 tentanons often reversed n anatomy):

"There is a resnon which can be surrownded by u conour C2 and I11e LRIensUY
level in this region is 18 £ 8 % lower than thut wdennfied by confour C17

(

At a agher level of abstraction we could nfer:

“The hydropen proton densuy m the regron of the cauduate nucleus adjacent 1o the
Sfrontul horn of the right lateral vemricle 13 18 £ 8 % lower than thut of the white
matter udjacent 1o the posterior harn of the left lateral veniricle”

At a higher level still we could begin to relate this to normality, or to proposed
pathology. with ielative degrees of certainty.

. 5.D

Mean

. - A
g e R %
stogram™of!Region Ct

Fig. 1. MRI Brain image analy sl for regional characierisiies.

The general structure of the overall imaging system can be described as i Fig. 2.

."
11
i
[]
Tl
i
P'[J
m
[}
y
e
O
]
tn
I
in

U

AL l—| TRAINING
I SET

Fig. 2 A General Moded of Image Anslyws,

104 P.E. Undrill / Image Processing

Computer vision and image interpretation concentrate on the final stages wiich assign
ebject classes according 10 the parameters of extracted features, and deduce hypotheses
linking the real world with the imaged world.

2.2, mage Processing
Image processing is largely concerned with:

* A pre-processing stage which, for example, might atempt 10 reduce noise or
change / enhance image contrast,) .

* The segmentation of the Image into areas of interest.

* The allocation of features such as shape, texwre, orientation and size.

Typical Application areas are:

Inspection Verification of assembly, quality control in production, directional
guidance systems, face and signature recognition and document
processing.

Medictne Tomographic reconstruction, cell recognution, automared

screening, image-guided surgery and multi-sensor sensor imaging.
Remote sensing of land use, emvironment monitoring and
international surveillance.

Virtual reality and image compression for broadeast purposes.

Environment

Entertatnment

2.3. Image Formanon

Images are formed either by reflection or transmission, 10 the first case a typical example
1s an object illuminated by visible light and recorded wiih a camera. The geometry of the
resultant image is governed by the general translation of a 3D object (world coordinates)
toa 2D scene (camera coordinates).

Transmussion images, on the other hand, result from the passage of radiation

through an object. The structure of resultant image depends on the internal properties of '

the object, A typical example is the normal medical X-ray fitm. producing an image in
Iwo dimensions of mmtegraied elecron density, thereby discriminating bore from soft
tissue. A variant of this, tomographic imagtng. produces a cross section (transverse)
image and 1s the result of processing transmission profiles taken at a number of different
angles of illuminanon, which are then buii into a three dimensional data space.

The images we deal with may be simple. as in a single printed character. or
complex as n an aerial photograph or medicai image. The two fundamenta)
characteristcs of images are their spatial resolution (number of pixels in orthogonal
axes) and their imensery resolution (number of buts per pixel). How this digital structure
is presenied to the observer 15 a function of the visualisation system, not that of the
processing system. It is the multi-dimensionality of images, from 2D to 4D (time
sequenced 3D), which often leads to data volumes of such magnitude that severe
limatations are placed on the form of processing that can be reatisticatly applied within
the ume availabie,

As an exampte, a magnetic resanance imaging system might be used 1o provide
data on the movement of the knee joint. Each image plane is collected at a spatial
resolution of 256 x 256 pixels with up 10 256 intensity levels. In each data volume there
are i28 planes, Eight such data sets are collected, each at a different knee angle. This

P.E. Undrill / Image Processing 105

examination would take up over 67 MBytes and it needs considerable computing power
to do quite simple things with the data in any acceptable tme scale.

3. Practical Algorithins

When we examwne the image processing literature to establish useful techniques, a
number of commoen themes are evident:

3.1. Coding E Ii
Simple methods are based on run-length criteria mapped onto Llle ir_nage in a planar (;,y)
or vertical (intensity) direction. Other approaches represent th utlines of sameness by aI
chain code. More complex approaches use image transformation, oﬁenAbased on spzcua
(Fourier) or eigenvector {(Karhunen-Loeve) methods [6,7,8), 1o exploit th redun]anqy
evident in structured images. A fundamental issl.}e is whether the compression re;y s in
an exact representation of the onginal image or is one which, whilst probably achieving
a greater compression, results in some loss of image quality on recovery.

3.2 Normalisation

Normalisation is the re-mapping of images in space, intcnsily. or time. The n}I?hst
common, and ofien most contentious process, is that pf spaual interpolation [9). The
problem is that all methods enforce some form of ﬁllcrmg as well as geomlemc chr:mdg:
on the image by the creation or deletion of wmage poinis. The most popular methods,
though not the most favourable. rely on bll.incar m:erpolat'mn or splineg ttmndg. s with the

Intensity remappung, often called histogram equalisation [14,1 |.|2|.l eal s'“l e
problem of image values bemng badly disiributed among the .)v?ﬂablc dn.sp ay leve s(i e
equalisation may distort the original visual presentanon of the image, but at
visibility of otherwise hidden features.

Cumulative Pixel Count

Remappeal
Prxe i P(1) contamms (1) + p(2) + part of p(3)
Values P(2) vontamns part of p(3) + part ot pi4)
P(n) ! i
. P{6) contans part of p{6) + small part of p(7y

I
o 1 3 6 A 10 [LENF

Ongnal Paxel Values LU

Fig. 3. Intensity Warping : Histogram Equalisation

The most straightforward method uses the curve representing cumulative distribution to
remap pixel intensities.In Fig, 3, P(x), (0 < P £ 1], 15 formed from the measured pants,

106
P.E. Undnll / Image Processing

th is i i : i
en the y axis is separated into n €qual bins which are allacated valye

mapped from the original x axis. Difficult; i . ues within the ranges
reallocate. - Difficulties anse in c!ecndulg which specific pixels to

In icati ical i
bead s ;:rr: :Ppll‘;:anop n medical imaging, the orignal X-ray CT transverse section
head m‘lmcres:g. {(a) is hastogram equalised to form the image in Fig. 4(b). Since the
are seidom umiformly distributed across the full image, regional forms of

h'SI gra. Cqua -Sa[4] ca p
. p Ie ada llng 1o th a
1S10gram ! It 101, 3D of (4] e 1m e¢ Suuclule. bU[HCCd]"g ["UCII
maore CO'"pu“”g powfl can be Used (] gi\fe I |gS. 4(0) and 4(d).

Over Emphasis of -

PRI

Cantrast Enhanced
with h_n. :

adi_l unnlmcau“:'_j.

Fig. 4 Howogram Equaliation Lt Oniginal, ¢b1 Global Eywalianion
(W) Adaptive Equalinanon,) Contrast Limired Adapine Equalisaton
Geomerrie warping L3 14 implies the orgamsed rem
SPACEs 1o anather using control pomis (Fig. 5. and 15
the mnmmsation of 5 sunable cost tuncuua

apping Hom one set of conrdinae
usually carried owt by reterence 1o

; TRANSFORMATION

———— e e e =T

contral points 3

Fig. 5. Spatial Warping . Geoometne Correcion

P.E. Undnill / Image Processing 107

This is"an increasingly common application, for example, in relating two earth resources
images from differenmt satetlies or comparing two medical images, one ol which might
measure funcuional characterisiics such as glucose (energy) uptake and the other
anatomical structure with each beng derwed from independent patient scans.

For linear, first order warping, if p, and g, are the coordinates of marker i in
related images, the relationship 1s simply expressed by warping operators.

P,=TIS{R{gI]I+N,

where T, S, R are the Translation, Scaling and Rotation rl‘lamx op%:rators and Nj is
positional noise. As this mamix muluphcation does not in: general, commute. least
squares minimisation of {(p,-TSR(qI))2 has to be amempied. Techniques which
decouple translation and rotanon [15], solving the first by Singular Value Decomposition
and the second by movement of the cenmraid have been found useful.

Fig. 6. Geometrie Re-mapping of an MR1 Bram Image

3.3, Lineur Filiering

A powerful method of 1mage computation is to apply a system process P 10 an input
function F(x.y) and generate a transformed output function Hix.y).

Hix.y) = P | Fix.y) |

Typical transformauons are those which atiempt to reduce noise by smoothing or
enhance intninsic characteristics such as edges. This caegory includes the most common
image processing function, that of applying filrers. A sysiem 1s linear if' for two arbitrary
funcuons f{x) and gix} the superpostiion property hokls.

Pla.t(x) + b.g(x)] = a.P(fixy + b.P{gx)]

Convolution in the spatiel doman and the Fourier ransform n the frequency domain are
the most well known linear operations | 16.17.18]. allowing:

108
P.E Ungnilt / Inage Processing

Setective antenuation of hi
reduction, or,

Reduction of the relative proportion of low freq
and heiping to locate regional boundaries via ym

gh spatial frequencies to achieve smoothing or noise

uencies thereby enhancing edges
dge restoration [19],

In the prattical realisati
Siu,v), [size m x mj, to
sums of products:

an of the Convaluytion lniegrai,

) linear
all points of an image I(], Tl vt the oy mask

kp, Isize M x M|, with the formation of

m-! m-|
Output(j k) = HZ_O EOIU»u,k-vj.S(u.v) for jk = 0,1,
t

wh i !
creas the Fourier Transform generates spatial frequencies Ftu,v

sequence of sampled values of fij.k), .k = 0,1,..._M-] according to:) from ‘a periodie

M-1 M-}
Fiuyv) = JI_:O kgo fG.k) . exp [-2muy /M + v/ M3

Edge detecuon 15 ofien

tecue a more compiex problem than sim le filieri
Ehe straightforward Sube| mask, might impiy oohisticaer
tnvolving Difference of Gaussians techniques, wh
edge localisation, while

i such as applying
More sophisticared approaches |20},

ich attempt 1o optimise detection and

mimimising multiple responses are ofien needed.

(.::?EJ Ir;:g.c‘l-:’n;c“mg Funiions ravonigmad ih) Ay crage, (0} Madian, (d) Ediee Derccto,
meming (¢) Founer Spcururp th) Bund-limiicd Fourser Spedtrum, () Recomstructad | n.‘
tamd-inuge profile wbere appropriate) e

34 Non-Linear Operuton

I the image pixel values in

a subset of h)cilllol'ls v‘l I8 fr om within mag COnstr 1
. }
i 1 e I. Strair ed

Crete courdinates are ranked according 1o:

RiL) = {r) g S50 .S | ', € Vi)

then standard UJ)C anons my Ql\e computin ey p ue !l L) from a “”L g1y
p 20 new lxt‘l H]l (1.))

P.E. Undnii / Image Processing 109

The most common of these are:

© high=r, Erosion
© hug=r, Dilation
LIS el (T Y| Median

. h{ij) =14, -1, Coneour Detection
The desirable property of the median 15 that 1t achieves nowse reduction (smoocthing)
withoul blurring details within an image [21]. :

Often these morphological operators are applied 10 binary images and can be
thought of as shape operators [22,23] Erosion causes a shripking of the image and
dilation an expansion. When combined in sequence they give the actions of Opening and
Closing respecuveiy. The first of these tends to eliminate small structures such as sharp
peaks or narrow bridges, the second tends to f1ll m small background areas such as holes
or gaps. Fig. 7 shows some of the more common 1mage processing techniques.

3.5, Segmentarion

Decomposition or segmentation of an image. or sequence of images, into simpler. more
meaningful components is often a complex task. Primitive operations which are used 10
segment shapes are;

* Thresholding to generate a banary object |24 The threshold level may be plobal,

applying across the full extent of the image. focaf where it 15 governed by a

defined region, or dhagsnc in which case it depends on each pixel value
exanned,

+ Edge detection, which once an image has been segmented nto a binary obgect. is
a trvial process. whereas contour following [23] by dynamie progsamming and
the hnhage of extracted ponts nvolves much more computational effort.

. Mathemaucal classification of shapes by one or more moments of order m.n,
which can be made invariant to ranslaton, rotation and scaling, typically;

M-l M-I
Momem ,, = Zo 20 MLy Lxy)
o =0 5=

= Chord length disiributions. Fourier descriptors or by decomposition into triangles
or polygons | 26].

« Computational intensive methods. notably the Hough Transtorm which effects
changes into parametric space such that searching for a cluster of evems will
indicate the Likely size and position of a regular and. more recently, imegular
objects |27.28).

In the presence of noise. shape discrimination may be less reiiable than region
idennificanon (finding the interior space withen a contour). Here we are looking for some
feature of homogeneity. A popular technique 15 region growng |29] where a region is
seeded and grown for as long as a gien parameter 15 satisfied. or split and merge
methods [30.31] which start with the whole image and progressively split those areas
which fail a regional test into four (or eight) equal, smaller regions. At some point the
criena will be met by a number of neighbouring regions which can be combined into

TR

110 P.E. Undrill / Image Processing

one of i i i
uregular shape. T]l-:e segmented two dimensional structure is usually described b
aquad - tree, of ocr-iree in the 3D instance, g

3.6, Texiure

::;:r::ly [fo“fre 15 an obvious phenomena though formalisation of texture has been
comangf F| IIC.UIL Uscfgl methods have been developed using simple statistics, auto-
» Fourier descripiors, co-occurrence matrices, grey level run lengths and

fractals |32.33|. The breadih ; .
expermen. of methods give adequate opportunities for compuiational
}

-3

Frg 8. Quad - Tree Representation

4. Parallel lnplementation of lage Processing Aigorithing

Tg_fchnulug)' has provided us with abundant amounts of computer memory and the power
of sigle processors is often more than sufficient to deal with rme-dimen?mnal
ca!culgtlglls. The same sutficiency of memory has led to 2- & 3- dimensional scanner
and digitisers capable of producing multi - MByte sized Image sequences at affordabI:
resource costs. The single processor concept has been tess capable of executing m f
the types of algorithms outlined above In accepiable ume-scales. B manye
- The conveniional approach has been 10 increase the speed of serial processors b
the use of‘ higher clock-rates, higher component denstty and faster technolo Thz
concept of parallel processing allows. in principle, the data and algorithrr%yl-o be
_d|5|r|bu¥:d over many processors and offers scaleable and order-of-magnitude benefits
im- ’cmc:erc are, ' of course. a variety of pa{allel architectures {34,35]. The
p tatien msiance of MIMD (Multiple Instruction Muluple Data) in the shape of
fhe Transputer s c!ealrly the mam interest here although innial considerations might
indicate the supenionity of the SIMD {Singte Instrucuion Single Data) architecture for
general image processng. In practical impleméntauions these SIMD systems involve
large numbers of simple processing elements acung in synchrontsm whilst MIMD
syslems al!gw individual, fully specified. processors to undertake separate tasks
communicating with each other as required in a controlled manner. ‘

P E. Undrill ¢ Image Processing 111

3.1 Pipeline or Farm Parallelism

If we have a repeated process with little or no requirement for communication during
each computation subtask, other than initialisation (which can be a quite considerable
overhead in the case of large images), then a processor farm may be the best form of
paralielism, Each worker mn the farm undertakes the same process, one-in-a-sequence of
processes. For example the 2D Fourier transform operatton which s achieved by
equivalent actions on sequential rows and columns. ‘

l

MASTER MASTER
WORKER WCRRER
WORKER
WORKER WORKER WORKER
|
HWORKER
Successive Tree Levels

Lwear Farm Ternary Tree Farm

Fig. 9. Provessor Farm Tupologies,

If the farm mvoelves many processing elements then the data transfer paths snherent i a
linear toptogy become extended and can be reduced by rearrangement into a tree
structure (bhaary or ternary beanching) as in Fig. 9 A further consideranion is that with
100 long a commumcation route within the processor farm and a migh Commumicanion &
Control 7 Compute rato. the processors at the end ol the line can become under-utilised.
More viten than not the actwal implementauon has 10 exist at a rather more
complex level with the need to incorpurate extra multiplexing butfers which attempt to

Ta parent Jarin clemems Frown pacent larm ¢lements

- - Lank
Internal
Channel

A T

Touinld Lain cleineins

Fromcluld tarm clements

Ftg. 10. Ettective Termary Processour Tree with Iniermodiate Butiens,

112 P.E. Undnill / Image Processing

Whilst SIMD processing eiements are often configured in square grids,
ransputers can be configured in numerous topologies such as pipelines, rings, binary or
tertiary trees, arays, meshes and hypershapes, allowing, principle, task and workload
dependent reconfiguration. One particularly interesting area this opens up is the prospect
of a softiware Supervisor capable of comparing the progress of a task with its required
completion time and allocanng sufficient power to achieve the desired objective.

Two finai consideratons are, firstly, that whilst MIMD systems can be derared to
model SIMD, the converse does not hold, and secondly, that biological systems have, in
general, evolved into richly connecied MIMD systems with a high degree of redundancy,
$0 perhaps 1n principle at least we are taking the dorrect Darwinian path.

The mamn 1echnical issues which impact on the decision of what form of
parallelism to implement are;

* What type of parallelism does the
recognition rather than linear nei
favourable properties of asynchron
Is there any consideration of cost ?
whiist the scaleability of transput
experimentation and subsequent ex

problem intrinsically map nto ? Once pattern
ghbourhood processing 15 involved then the
iSm can often be more readily exploited,

Many SIMD systems have a large initial cost,
ers allows a considered approach 10 imuial

pansion. A corollary to this is that transputer
systems are more likely to be compact, self standing and transportable, issues
which are very important in providing successful applications in the general
workplace rather than in the computing faboratory,
Are there any principled advantages in ustng MIM
that the mode of working maps more easily nto co
more robust code with opportunities for redunda
flexibility or poses academic challenges. The 1
number of positive features 1n each of these,
What form does the working environment
solution for any given tash ? Here the siuanon 1s not so clear cut. The nherent

Hexibility ot reconfiguraton of transputer networks allows even simple changes
to have quite profound effects on soltware stabiliy.

D ? Typical answers might be
gritrve processes. can produce
ICy. provides exira degrees of
ansputer and OCCAM have 3

take and how long 1s the time-to-

Operation on 256 2 image SIMD (AMT DAP 510} | MIMD (8 x T800)

3 x 3 Convolution (integer) 20 msec 500 msec
Fourier Transform (real) 600 msec [640msec

Table | Comparinon o Comviciutun o Fuurer Transtorms on SIMD and MIMD ProCesson
As ‘Table | shows there is some Justification for the imwal premise, claiming the
superiority of SIMD | when applied to elementary. repetitive algorithms usiny imener

arithmetic. a feature which becomes less obvious as the algorithm complexity and
floaung point operations ke piccedence.

5. Practical Considerations of using Transputers in Image Processing

The basic question which has 1o be consid

ered 1s the most appropriate form of parallel
paradigm for 1he task at hand:

P.E. Undridl / Image Processing 113

minimise the idle time of the workers and efficiently route data through to the other
workers in the newwork, as shown in Fig. 10.

5.2 Geometrric Parallelism

i i o be

An alternaiive model for neighbourhood processing 15 one which allowsocrla[t: ;:c[o
distributed across the network {or array of Processors) an: tor eich p;o::;i o and

a. If f processing is one which takes &
subsets of that daw. If the type of pr : an input
generates a new value, or values, from operations governed by‘ small get e JSOI;.H;:Z::;
which are subsequently placed into an output array, then a si !;])Ic r:gl;ca%«;l aeng

ies i t 10 each processor will suffice.
boundaries in the working arrays sen A .
parallelisni is often known as domain decompositiun of dara pgra!!emm. Edge detection
non.]

by convolution would be a typical opera) »

’ As described in |36] the worker processors each receive their own :]?nr:[lgg
sections of an image and then copy boundaries between [hemsel_'es n a sy eiric
manner. For an n x n (n is odd) neighbourhood process, each working sub-image
have a boundary extension of int(n/2).

REGICOHN
3

REGION

b

—
[S AR R R NN N
o s (312 1D MDD 1D
W = e e

(ST]

[FURLEV RN
[£

ke v

-

N

.

o

]
L Lo
L

—
—
—
—
[
—

trrs

Lty

tata

[ES]

[t

tJiJ

[N}

[

—
—
—
[

[
—

'

REGIQN

REGION M
3

[O T I B S B B B e
W b et Lt At L e b

B e dn ke b e
& ke s e -

Fig. 1}, Parutioning ot imags sepments bers ecn LOUr Provessons.

in the example above a 24 x 24 wmage s split into equal quarnl(les and scr:‘:‘omi
i k. If the pixels contained i
‘hich operates ontusing a 3 x 5 mas
processors, each of w Chon, the workine amays
i nated by values | ... 4. the
intbal 6 x 6 yuartile segments are desig : ‘
have to be ar%anm::d as in Fig. 11, which shows the paruuoning of }he orlglnz?l data prlul);
1o processing Whilst Fig. 11 indicates the arrangements for the fucing edges it s usu;i .
pad out the rows / lines of the parutions which represent the exrernal bnun-dunes of t Pi
origmal image with esumates, ofien zeros, o allow the filter 10 act up o e natura
xtent of the data.)
o If however the working array 1s being updated for both input a.nd output such-:s
in the optimal solution of etectric field disibution as given Laplace’s Equau;n lu:,:iugu
Gauss - Siedel methods. then the communication model has to be adapted to nc;mde;s
the larger amount of mteraction inherent in the problem of updating o
simulianeously.

114 P.E Undrit 7 Image Processing

3.3 Algorshmic Parallelism

In {his approach each processor execut
achieved by examination of any natural codin

cved F . .
partitioning of segments of a repeat loop, nalysing o o et by the e

! or by analysing the algorithmi i
pant ‘ g gorithmic dependencies,
s form the data moves between processing elements and the concept can also be

referved to as dara flow paraileli j
elism. One major benefit is th indi
i : v i al no large individual s
Sl;b mal’nces‘ dre required. A difficuity is that since there is likel : ares
0 algc_)n:‘hmlc interaciion needed, the danger of deadlocks
communication overheads become sigmificant. N
macr.unes discover, normal neighbourhood procej
matrix terms. -
_ in the example shown in Fig 12, adapted from
usin i
Horigzozr[;]r;rzcrgsgi\;x& \tfh; st't:r sends m x (n - length horizantal vectors) to the
erucal Processor in turn, each of which i
Sums over m pomnis (with due re 1 i one of the sen
gard to the ends of the arra
o ¥s) 1n one of the wo
ogonal directions, (o a resuls pracessor which then forms a final vector sum and

divides throughout by m2,
MASTER -

ARRAY Barrial Sums—'

. inefficient load balancing and
vertheless, as workers with pure SIMD
Ses can often be re-written in vector or

1371, of averaging an n x n image

IMAGE

Jertical

Fig. 12 Convolunen by Algurnnmic Detompositon,

;I"ll:lsc;]sirllnf:;i?;?llzcn::h;;e 'the va'icn.c_v of the transpuier and current hmtanons 0 the
pma‘sm;s - cole u:ﬂ‘ "tlls-m-s \shlg-h are avadable c_mstrain the number of orthuguenal
Comple redo U atll ¥ _melu'g. ed. The chawe of appropriate topology. and often a
N ﬁ;Sl o gl;m’lhrp rather than the adapration of an existing method, can
droronoae first Han: above issues. However lr]c size of sub-image dala sets, their
achions on i 1A ‘gzlli:] a:edcéhfos::p':nlr:jg;t data between processors (o resolve
s O mag : ’ e y more than one transputer leads 1o

apcum:l difficulues which have to be resalved for many of standard image processing
decomp‘g:l:::gn:n:ﬂ:ﬁe;ﬁclolask |sdcon5|dFrcd. these simple topologies or algoruhmic
Quest o €Mfeiency ca o pt::vu e the single most efﬁcmm approach, Ullimarely, the
P or . y rcsolva‘ble by dvaumic _reconﬁgu’raliom This flexibrlity
pology and methodology can be viewed as the major advantage of transputers, or

alter i isadv i i
ternatively their prime disadvaniage, which 1w its turn can lead to a lack of robustness

] of gen | Y. ferabi Il)‘ in many ”"pIc'“e”la“o'u‘ F or
ack erali ar dlrrlClIllIES of ranst |
£xar lple. I a given ploblclll. whilst

: a divergent ree might be
ample. given | . g appropriate. for data
maylb:[rl?:;ig:sm:}:.r;,entr)elrcbe might be best for data collectiony. The calculation phase
. imes, est described by a balanced i f i
) . ed linear farm, a pipe line of
progressive algoruhmlg subtasks. an n-siage ring, a regular network of proccg:ors or a
One-to-many-connectivity neural network. ‘

These design and management iss l
: ues of topolo iti
repeatedly in many of the reponed applications. Povosy and decomposion occur

e$ a sub-unit of the toral algorithm. This can be

P.E. Undrill / Image Processing 115

6.0 Effectiveness of Parallelisation

In [38} the essential question of whether an image processing task which is divided
amongst N processors can run in 1/n*h time 15 addressed. For point, neighbourhood and
global domain decomposition, theoretical and practical results where found 10 agree (o
within 14%. Algorithmic Parallelism was seen as presenting much more of a challenge.
if the 1/n rule is not obeyed then either

» The computation is unbalanced across the processors, Pccause c'pf a design fault or
simply because the prablem cannot be dealt with by a parallel algonthm, or,

» The processes depend on each other and are waiting foé' wransfer of data or status
information, or spend an excessive amount of tme passing messages amongst
themselves.

6.1 Cuse Siudv I - Image Reconstruction

An analysis of applying different forms of parallehsm to a real problem in image
processing has been presented by Byme [39]. The example chosen is filiered back-
projection, a popular form of image reconstruction from projections, The problem iself
is relatively straightforward [40]. Image profiles Pyti) are taken at angles 6, equally
distributed in a 360° rotauon. The reconstructed image can be formed in two steps.

. The oniginal image profile P, is corrected for detector sensivity producing Q
which 1s subsequently convolved with a function C 1o give the filiered profile F,.
2. F, s now projected over ihe tunage plane giving Hex.y), the reconstructed image.

Whilst a theoreucal caiculation of speed-up by parallel systems using 2000 processors
has been given by Kingswood [41], and a processor farm-buased solution to the Instance
of 90 prondes by Fourier Methods analysed [42]. Byrne W) investigates the problem of
reconstruction from few, approx. 3. profiles, typical of the data cotlected in puclear
medicine emission tomography. by reference to ditferent pmallel paradigms.

Method | uses geometric division of the fnpur daa set between avalable
processars, whilst method 2 uses domam division of the owipur data such that a specific
section of the final image 15 dealt wih by each processor, whilst method 3 incorporates a
pipeline approach 1o overall process. with the tasks bewng farmed out to the network 10
turn. The three methods were implemented on a system with 10 transputers connected as
a linear farm or alternatively as a first-layer ternary tree with a second-layer binary tree.

The work anaiyses the number and dimension of communication events for each
method and then how this is related 10 network topology. Whilst in method 1, the whole
image array is needed by each processor, and hence has to be passed back for final
addition. method 2 requires that aff the profiles are available to each processor for its
own section of the final image. In method 3 each protile is filtered by the root and back
projecied as farm processors become available, returming a list of coordinates and values.
The results are shown in Table 2 and Fig. 13.

On a surgle processor the whole image reconstruction task takes 1.84 seconds.
For method t., each processor receives 1/8h of the number of profiles and proceeds to

add parual sums to posiions m its view of the whole array. Each parent sums its
children's result with s own and passes s result lo its parent. A decrease in
performance improvement 1s seen as the communication tme s progressively domnaied
by the N transmissions of the whole image. However the acwal performance increases

e

Pr

1
16 P.E. Undrili / Image Processing

with the number of processors used

: (at least up to 10) with an observed 1 i
Inefﬁcu}::ncy Factor (RIF) of 2.6 when compared with the ideal value el Relave
by cach gre Cmethod 2 as the number of processors increases, the image size worked upon
by eac r;:_ases and the final accumulation process simply places. rather than adds
greamatghcs. Since each child needs the full data set, communication of input data is
B ;: sl{r;gglset?::: Oéimf.inowcver, using this approach all processors carry out the
¢ . Mg unnecessary com i ing i
improvement and an RIF of 4.5 using 8 progcssorspma“on e resuling in more gradual

In the final method, the im, :

| method, provement flarens out as the abili

supply filtered profiles is reached with an RIF of 1.9 using 6 proc:cssorl.f:lIy of the root o

Decomposuion Pracs, Target Actual RIF
Output Domain B

[nput Domain]g (Ol{(z)g 8'54* 2%
Algorithmic 6 0:I66 O-g;* gg

Table 2 [mage Reconstruction: Rel fi
: Relauve Inctticiency Factor (RIF) &]
Number ol Procesors [+ - hmiting vfl.::‘; Method of Decomposition and

For this example, algorithmic decomposition achieves a beter speed-up over few

rocessor i
p s but then saturates early, output domain decomposition method continues its

improv
inpp:n d;zg?’: tt;:fcer mare processors, but levels owt with a poor speed-up factor, whulst
omposiion continues 1o improve wi .
ith added processors. Clearly. si
most complete jobs require a se i i ing actioms. the
>t com quence of ditferent types of image proce
choice ot approach 15 not simple 10 establish. ¢ processing acuons. the

-
T

-
T

Ineffiency Ratio

° . . N . .

[2 D 3 [3 :
No. of Processors (TBCO)

- Input Domain ~a— Algoeithmic - Qutput Domain

Fig 13, Improvement of Image Ree
Y I onstruction with Numbe
of Processors and Method of Decompusition s

6.2 Case Study 2 - Image Presentation

T . . .

c::lp:lf:fmn:;‘ and ‘umcly presentation of 2D projections of 3D wvelumes is a
atmnally seaing @ik, Whils i

o g U the geomerric wransformations nisy be well

HRNZE FOCEsy
'5E piintading componenis, especially those related 1o the optimum

P.E. Undrift / Image Processing 117

methods of dealing with noise artefacts and sparse data sets remain significant. In an
analysis by Lomax [43]. multi-ransputer systems have been investigated as part of a
praciical implementation of novel 313 medical imaging algorithns. Using up 10 12
processors, iwo major components (tasks) af the image presentation environment were
examined:

Task { Visible voxel detection. i.e. establishing which parts of a segmented voxel
image are visible from a given orientanion.
Task 2 Calculating the surface noimat, and hence applying a lighung model to

emphasise edge sirengths. !

Whilst the algorithms themselves may not be of interest here, even using the most
aggressive techmiques on seral processors (cuca. 1990}, chinically useful data
presentation could not be presented within acceptable umescates. Cine sequences could
only be obtamed by prior selection, and single views. were Laking about 20 seconds 1o
produce. Fig 14 shows a sequence of images of segmented brain, visualised by an

operator-controlied cutting plane.

Fig 14 Prescatation of ihe Bran «s a Three-Dimensional Structure.

Each of the task units above were found to exhibit few opponunuties for algorithmic
parallehism. Data parallelism was exammned in relation to unary. binary and ternary farm
trees. populated by up 1o 12 worker processors. plus a master and a display controller.

Fig 15(2) shows the relative improvement of the visualisation roulines as extra
processors are added into the farm. and Fig 15tb) indicates the esumated Active / Passive
ratios for each processor and network structure. This parameter reflects the amount of
time spent communicating and waiting wn relanon to real work being execuled, and is a
factor which measures the latent overhead of the farm structure. When taken ino
account, a performance nctease over the ideal single processor implementation of 7.8 is
observed. instancing 1.2 processars in a ternary tree.

Definitive wends in packel size optimisauion were less clear, other than the
observation that broad optina existed t between 32 and 128 paxels Tor task 1. but task 2
needed data packets of at least 512 pixels.

118 P.E. Undrdl / Image Processing

Furﬂ)cr analyses were carried out using global buffers [44], 'raLher than local
buffers fpr INwra-transputer communications and the variation of performance with data
packet size was also nvestigated. Global buffering was seen to have a more marked
effect, offering improvements of up o 20% in algorithms which were shown to have
many, smail data communication packets and short processing times.

L)

- 3

v T
- —
M w
v y

[N
T

>
I
T

a
Y

T

Relative Parformance
-
Aclive — Passive Raolio

o " s . N A N s A L

-3
@
8

' 2 Y 2 o "‘ I‘I L i .l n " " A L L A
[3 4 35 4 7 a
No of Processors oo
-a-Linsar Farm, Binary Tree . Tertiary Tree

N

Ho. of Processors
»Idea) - Linear Fam
- Binary Trea,. Tertiary Tree

Fig 15(2) Improvement with No. ot Prixcessors Fig t5(b) Active / Passive Ranos

Table 3 Jden‘!iﬁes the improvement when using global buffers for each task. assuming a
wrnary tree farm and a link ransmission rate of 10Mhz.

Task -Packet Size | Proc. Time | Proc/Comm Ratio Gain
Visiilityl 32 pixels 2 msecs. 12.5-1 8.7%
Shadmg 768 pixels [360 msecs. 292 | 3:4‘37:

Tabte 3 Task Improsemeni trom Using Global Butters

As a res.ull of using the ternary farm with global buffermng, plus equal attention given 1o
optimising floating point operations and image coherence, the ume to produce an
arbirary selected view from a 128 x 128 x 128 daa set has been reduced from 20
seconds / view on a VAX 11/750 1o 150 - 250 msecs. using 12 transputers.

7. Review of Applications

The popularity of the transputer in image processing makes the comprehensive appraisal
of the communi_ty's activiuies a tormidabie task. The degree of interest is indicated by the
Image Processing Transputer Applications Community Club's over 160 registered
members [45]. Anather indicator can be formed by assuming that the 1990 and 199|
SERC/DT[Transputer Applicauon Conferences are a representative sample of user
interests. Gut of a total of 221 papers presented 48 (22%) addresses image processing

or image preseniation problems. This section allempts 10 assess and summarise the range
of mnteresis.

P.E. Undrill / Image Processing 19

7.1 Development and Support Environments

Many of the earliest investigations centred around the provision of resources and
frameworks for further experimentation. Typical of these were the developments in
which general purpose parallel processing environments were produced [46,47.48), or in
which the processing of captured images in real-ime was seen as an objective which
could be more easily achieved by transputer implementation (49]. In a design suggested
by Seed [50} the transputer is used to control fast memory.!‘organise 1/0O controllers and
enable custom processors 10 be incorporated. An alternative approach, which provided
multiuser access to transputer facilities, is described by Ross [51) in the design of a
Ethemnet controller 1o nterface VAX (and more recently PC and SUN) processors 1o a
20 x T800 network resource. This specific development enabled a number of projects in
medical imaging, subsequently reported by Byrne [52] and Lomax [53].

Whilst several manufacturers have image processing software libraries which

'su'pport transputer based parailelism in one form or other {54} the fundamental 1ssues in

designing a descriptor language appropriate 10 image processing with transputers has
been addressed by Crookes et al. [55,56,57] out of the Image Algebra natation. in which
the main concepts are that low level expressions can be expressed using remplates and
images |58], and that the wnderlying parallelism should be hidden from the user. Other
approaches 1o software development are described by Dew [59] and Henderson [60}.

7.2 Imuge Assisted Roboucs

Image Processing 1s part of the hink between image capture and rurellegzenr robotics. At
the Artificial Vision Research Uit an Shettickt University |61.62.63] a comprehensive 3D
vision system has been devetoped involving 25 x T800 processors, industry standard
MaXbus hardware and a SUN workstation, The [lirst objective 18 10 recaver 3D
geometry from general 2D scenes, by comparing pairs of Canny edge-fillered images
obtained rom binocular views. The information derived 1s maiched with itlems held in a
data base of shape-and-size deseriptors, A final step allows a robot arm. ender the
control of a separate PC. to pick up one of the denufied objects. Overall processing
times from observation to pich-up of 10 seconds are guoted.

A medical application of scene analysis and machine guidance stans with the
real-time image as generated from a colonoscope [64]. Using a transputer based dynamic
reconfigurable parallel system. the image from inside the human colon is analysed with
the objective of keeping the viewing head of the endoscope moving smoothly along the
longiudinal axis of the colon. This is achieved by balancing the intensity of the
sidewalls and ensuring the centre of the field is always held by the dark zone
representing the distant view,

7.2 Recognitton of Real-World Objects

A framework for the image classificarion based on the ransputer is inuoduced by
Farhurst [65] in an application related to the recognition of postcodes. Alternative
approaches to the partitioning of the chosen algorithm over sub-groups of processors are
reported. Further theoretical analysis and simulated performance figures [66] show how a
throughput of up 10 20 pauerns per second and an error rate of {.4% can be achieved by
a network of 8 transputers.

Progress in the same pautern recognition task is also described by Tregidgo [67).
Here the problem s examined starting from the premise that wree-type topologies can
provide the scaleabliluy necessary to allow the hardware to be extended w0 sansfy

120
P.E. Undnill 7 Image Processing

operaticnal demands, The
as preferable to the loss

processing rates of 10 Posicodes per second
of magnitude less favourable than Fairhurst, ‘
The recognition of vehicle number plates has a nu

road pFicmg, analysis of traffic data, crime investigations G spea P pcations ¢ Roang

and speed enforcement. Robust
.Icm is reasonably simple in the
ng conditions, an oblique view
from a wer motorway presents a

which classifies regisiration leners by shape recognit

knO Ie gc i d nsion g g g
wied 0! he imensional re u]a“ons Ovcl"i”

Face recognition is another co ich is bei
of workers using a wide range of archizgz:c;as 'l}fh‘::;ih ot
_from the changes of ageing, facial hair and :
implements a system where facial images
methods into regionally dependent spa
are represenied by a connected graph
candidate faces. Using 31 x T80O proc;:s
candidates in 30 secongs,

06 laking into account a-priori
UK number plates. An accuracy of

g attempted by a number
ent of the general problem is clear
spectacies that can affect of us, Lades [s9]
are characterised using Fourier transform
nal frequencies and orentations. These features
which can then compared with a dara base of
sors, an individual face can be selected from 80

7.3 Resotutionr of Sieremcopy

The inve] i i
! some:ﬁﬁzot"?all) lvt:;u:lnsauun Is the interpretation of 3D structure from 2D views. This
compu[alion_,al o e zman;n;mn System general does very well, but is a complex
oot objeu; wj:lhon-s:lenn‘g the inverse of the scaling, rotation and translation
exhausoe selemny ol st\:e dcﬁn.cd vertices. a captured image can be marched by
for 3 objec boving 5 ven?pf Ccandidate {71] with a typical detection time of 2 seconds
knowiedee e 8 atgomrt.s (.parallclaplped) using 8 transputers. By incorporating
openeds m. improvements of at least an order of magniude are
below]l(r;b rg}c‘)[s:s :tlt:‘afse;l;occss]ng applicauons we are dealing with images which are
commonpla, Hglden ::e of femote sensing. images of at least 4K pixels squared are
percc_wedb's.m ouler [72] describes l!le problem of comparing two 2D views, as
¥ sdteihile imagery, to determine surface topology, a task which takes up ;o 6

¥$ Supernode system, the

SUN Spar . eth of_ the time taken on

the aumF; € L+ system. lm_age seclions were processed using geomerric parallelism :
rs state that very little recoding was necessary in the transfer an

be 2 system using a single T800

P.E. Undrul / Image Processing 121

7.4 Inspection

Detecting the corrupuion, including subversive alteration, of text between two notionally
equal printed copies [73] can be achieved by producing a difference image which is then
analysed for connectivity and spatial content. Using five Td414 transputers an
improvement over a IBM PC/AT from 29 to 1.4 seconds is reported at an 87% success
rate,

Indusimal inspection 1s reperied by Netherwood (74] with the objective of
confirming the likely viability of surtace mount and solder joints. The technique chosen
te outline regions 1s, once again, the Canny operator producing skeletal images which
can be :wdenufied using shape descriptors and allow segmenteﬁlarcas of the original
image 1o be measured in terms of a quality, such as lexture, which can then be related to
viability,
Another application is the inspection of labels [75]. As customers we feel
annoyed if product labels are wrongly positioned, folded, torn or skewed. In the system
described, using four transputers, checking rates of up to 20 labels per second have been
recorded using prior knowiedge of the dimensional characieristics of a satisfactonily
placed label.

In a "down-to-earth' application |76}, an image of rock-blast debris is analysed
with the objective of measuring the fragment size, so that blast engineers have time to
adjust the design of subsequent blasis. Essentially the problem is one of segmenting the
image nto fragment classes and working out their dimensions and extent of overlap.
Using 4 transputers, analysis time s reduced from the previous tens of minutes,
appropriate to manual methods, 1o just 2 minutes.

7.5. Determinanton of Opuc Flow and Dimenstonul Chunges

The analysis of a series of reai-time images. often taken from video cameras. can be used
to answer questions such as how many objects pass by within 3 given ume interval. The
acquisition of more than one perspective view can reinforce the selection of objects from
within a known candiwdate space. In another tratfic related problem. that of calculating
vehicle movement density within a given section of road space |77]. those charactenistics
of abjects which are likely to be owned by moving vehicles, such as road wheels or
headlights are 1dentified and lead 10 a vehicle count.

A rapid method of compuiauon which dentifies regions of high curvature
{(corners), then maps their movement across the image trame has been used {78] to
quanutate absolute and relatve movement of single and multiple objects. Using 8 x
T800 processors. decision times of 2.7 seconds are achieved in an expeniment involving
the analysis of images of two vehicles, moving at different speeds, n parallel directions
across the field of view.

Algorithms which may be successful m good viewing conditions often perform
tess well 1n poor. but not infrequent, operational conditions. for example, images of
awrcrafl descendmg through mist. In this instance, ambiguities can be better resolved by

using probabilistic relaxation algorithms {79}, which have been lested on a four~

transpuler host and will be implemented on a target system contaming 20 processors.
Another aspect, that of whether information from Red/Green/Blue video signals taken
separately can help edge detection in a changing visual scene has also been considered
(80]. A general scene 1s pre-processed to establish its information content which then can
be used to derive the kernel size for a Canny filter. By comparison with a monochrome
version of the same scene the conclusion 1s that the -combination of evidence is

benehncial.

e e A

122 P.E Undril / Image Processing

. W‘h‘en applied o large objects, such as the Humber Bridge [81]. sequential
studies of images have been found to be superior 10 accelerometer mes;surer;emg which
cannot dea! adequately with the low frequencies involved. Using a Quiniek Harlequi
board, 4 transputers and ron-predictive searching, objects can be tracked at 83 pixcls(}sez
movem‘ent at update rates of 3 frames per sec. This performance can be improved up to 3
theoretical hmut of 400 ‘pixels/sec if a prediction model is employed aIthI:Jugh
movemenjs which are dnferenl' from the prediction need carefyl manag;:mcnt. By
viewing fixed markers on the bridge's central span, lateral oscillations of 200 cm. and
time dependent drift in excess of 100 cm. have been measured. ' -
oy B The study of sc;qugnnal retinal images fom ophthaimology studies is described

y yrnf: {52]. The objective 15 10 compare similar re'g:ons of the retinal surface using

penod. of a few minutes or be gathered over a many months, The underpinning method is
ORe of £ross correlation using strong features, Each of the processes of thresholding, the
applicanon of a Cann_y filter, object selection ang maiching by ranslauon and roilion
?:gn:jt;ssc‘;;bedlusmg single processor and 8§ - processor instances. Efficiencies ranging
o 1o ‘.4,% ae rc'porte‘d. dependent on the image processing task. One of the main
ahsa?c es .[0 effhiciency in this type of applicauon is seen (0 be the need to distribure

ole images 1o tach of the worker processes and the difficultiies of tracking finear
features. in this case rennal arteries between processors, (a generic problem which 15
returned to in section 8.2). Using two or more strong features, such as bifurcations,

matching of rotation was found to be
correct fo 0.2° and the estimation of
- almost always correct. on ot ranslation was

Fiz. 16 Fluoreseien, Ao showing nuagor blocd s evsels and 1 correapunding
binary cdee image bor use as « wotrelalion seari b drea N

7.6 Tramfiornn,

Computationaliy intensive image transforms have always been seen as a challenging area
for muln-proc_cssm' implementation. As an example of sputial transformation, in (he
producn_on of electric potential distiribution within the brain starting frém the
conventional cIFClrocllcepllalograpll 182]. the compuational toad of interpolation by the
Sour nearest nei¢hbour method needed 1o produce a 128 x 128 image is carried out zsin

four processors, arriving at the resultan| image n a litte over ! second. In a med:cagr

2

B o

P.E. Undrifl / Image Processing 123

imaging problem dealing with trrensuy transformatton [83], fluoroscopy tmages (N-ray
without tilm) are corrected for scatter and glare in order to improve contrast and
appareni resolution. With five transputers, the process times are reduced from over 20
mnutes on a IBM PC/AT to 6 seconds.

The Hough Transform was earlier described as a method of clustering obects
with similarities into common regions of paramerric space |84] In essence the transiorm
produces an alternative 1mage space out of original, which 1s then searched for tocal
maxima. Lotufo et al. }85] implemented line detection atgonthm on up to {1 processors
acting on a 256 x 256 image exhibiing two strong hines, achieving detection within 357
msecs. This theme was subsequently developed by Costa a6 i10 operate in binary
arithmenie, Using a four T800 processor system. an effectuve improvement per processor
of 38% was achieved. In the umplementatuon on circle detection shown n Fig. 17. [37),
rather slower operation of 3.14 sec. to detect poswon and radws were reported with 720
edge points and 6 processors using a non-optimised partinoning of the algorithm. This
performance was tmproved by more than an order of magnitude by Eghiesadi {88] using
a mixed processor environment of transputers and Texas TMS320C25 devices.

The relative immunity to noise of the Hough ransform has been used by Yang
[89] in an attempt 10 establish the orieniation of an object moving across the field of view
of a CCD camera. Using an array of nine transputers, the detection algorithm takes 33
msec. The experimental objective of a field rate of 60 Hz coutd be achieved by
predicting the next position of the object from s previous motion,

Fie 17, A selection of Cucles (4) and their Hough Transtorm (h)

The Radon wransiorm is one of the fundamemial processes 1n the reconstrucuion of
images from thew profiles. Hall {90] describes s application o Synthetic Aperture Radar
images by a Fourier Transform methed. an alternative to the filiered back-projection
approach menuoned earlier. Using a single T414 a ransform was achieved in 4 minutes,
with the objective of 4 seconds being obtained using 25 x T800 devices. organised into
two ternary sub-trees. Further developments. reported in [91] review the prospects of
dynamic switching of the topology to optimise efficiency and 1o direct processors 1o
where the effori is needed in order 1o complete a task on nme. In an aliernaove
exammation of image reconstruction using a Fourier back-projecuon interpretation of

&

124 P.E. Undntll / Image Processing

Radon’s method, Kelieff [42] uses a Meiko Computing Surface conﬁéured as a linear
farm to reconstruct 90 projections into 256 x 256 image space in 7.14 sec., figures which
when nor‘mzlalised for compuiational load compare well with those of Byrne [39].

Similar work on the reconstruction of nuclear medicine positron emission
!omography (PET) 1mages has resulied in the companison of grids versus mees using
input and output daia decomposition {92,93] . In these studies, trees are once again found
lo be superior, However when the problems of PET reconsiruction in real time are
analysed, systems icquining at least 200 wansputers of the T80D form are considered
necessary {94j. In another medical imaging applicplion. electrical impedance tomography
hol'ds_ out a prospect of non-invasive imaging of internal organs, by measuring their
fesisttvity, without a large capital outlay on scanner equipment, albeit ar present at a
rather low resolution. The objective of reconswruction within an accepuable timescate
with a PC host as daia collector and display has been aided by the 20:1 speedup reported
from using a single TBOO wansputer [95].

A extension into full 3D reconstruction, rather than by a series of 2D slices is
rcporteFI by Zapata [96]. Applying the techmgue to the veolume imaging of the
Escl_menchla Coli miciu urgamism, a 3D Fast Fourier Transform is produced from the
prefiltered profile data and the resuliing daia set subjected to a low pass filter to reduce
residual high frequencies (noise). Using up 1o 8 processors arranged as a 3 dimensional
hypercube applied 1o objects of 32 x 32 x 32 pixels, total process umes are reduced from
311 sec. 1o 44 sec.. a speed up factor of 7.1.

7.7. Representations

As menuoned earliec the size of image data seis can present a problem, sometimes
capable of resolution by quadtree tor ociree 1n the case of volume data) representation,
which although fesulting in a more compact dara structure introduces ditficutues in
subsequent analysis [97|. In the speciric tash of selecting vaniable orientation shees from
2 256 x 256 x 256 image space, the Millar Polvhedron methad |98.99}. working on four
transputers. exiracts shees in 15 seconds as opposed 10 greater than | ninute using data
sets containing much smaller numbers unage planes at 256 x 256 pixel resolution.

. Segmentation of Synthetc Aperture Radar images is difficult since these are
lxplcai of ymages having a low signal 10 nose ratio, Starting trom small regions (4 x 4
p:xgls) Cook |100] determines sumilarity measures which allow region merging. Using a
Meiko system with 9 (ransputers, each processor grows a region until the merging
crierian can no longer be satisfied within its section of the image. The whole image 1s
then composed by the master processor. resulting in segmentation by regional
characienistics.,

) Other approaches use swtrmghiforward data compression. The problem of
safeguarding old photographic records from the Welch cotlecuion n the Ulster Museum,
“'h!lsl sli_ll allowng pubhic access has been addressed by Crookes 1101]. Apart from
keritage issues. having digitised the photographs 10 an appropriale resolution, the next
naural step is (0 allow the viewer 10 browse using such standard techniques as zooming,
contrast enhancement. spatial frequency alleration and edge detection. With 16
transpulers an interactive image enhancement facility has been de veloped.

The design of image coding system aiming to wransit video images in near real
time across a Local Area Netwaork is described by Chong 1102,103,104). Transputers are
seen to give the fexibility necessary to respond 1o different codecs, The CCITT H261
recorr'lmendation is implemented on a network of 18 transputers, achieving a coding rate
of 3 frames ner second. An aliernauve method. based on fracials, is shown by Gaffiths
[10s) to p t image texture, but with the possible introduction of blocking artefacts.

i"

P.E Undrill / Image Processing 13

Starting with original images having 8 bit depth tesolution, compressed 1mages of L1
bits per pixel are reported without any nouceable degradation m image quality.

.

7.8 Real Scene Sumutanon

Simulating the real world is important i many aspects of waning,, whether in the
existing game-like flight simulator software or wn the simulation of surgical
interventions, The development of Virtual Realuy is an exciting prospect both for leisure
and professional skill enhancement.

The design of a driving simulator has been presented by Zymmerman j106] using
25x TB00 processors withi e objective of producing realistic images of scenes
described by 600 polygons at 23 rrames per second. The scan-line and depth butfening
techoagues for landscapes pose conventional problems, whilst simulating accidents and
collisions with statc and dynamic road-occupying abjects at varying densiies was seen
as a more difficult task.

Image Presentauion for the advernsmg sndustry has to produce images of ery
tugh quality, although not always i real-time. Conventional photo-catistic composition
methods are used [107] within the framework of the RenderWoman Software. runming on
8 x T8O(processors. This sysiem is quoled as achieving. at higher quahty, in 210 3
weeks what has previously taken 3 to 4 months.

7.9 Volume Renderinyg

The use of transputer sysiems for volume imaging and ray racmg has proved a popular
theme 108,109,010, the diwving force beng o achieve inreraciion with the rendered
scene. Lomax [4At1] desenbes the use of g single Ganspuies sysies i regudar use ror
the diagnnosis of cardiae motion disarders, patiicudarly n the wenhfnicanon of mlarctzd
lissue and aneursms, whitst Canpon [142) generaies M) cardie images from N\-ay
Computed Tomagraphs. In Lomav's work, the ongmal images are of blood pool
Jdistibution wathin the cardide chambers as determined from ume-gawd Single Photon
Emission Tomography, winely can be displayed as the usual surtuce shaded views.

{a) th)
Fig. 18 Phase Wasetront Flow (a), i red which staris i the top lef-hand image and flows 'n el the
venuricle belore reappeanng trom dhe postenaor surtace of the dirum, and Waohhhing sequ trom
cariat bbood poul intages 1tp of lett sentn e bas blue antiephase shads and poinis gene sandy

PP

126 ’ PE. Undrill / Image Processtng

The umgque aspect of this implementation is the ability to view the images as parametric
surfaces. indicating extent and phase of cardiac motion and to visualise the manner in
whicr_t the contractile wave front, representing elecinc stimulus moves over the
ventricular surfaces, Fig 18. Another unusual fearure is that is performed on a transputer
system interfaced to a simple BBC B microcomputer.

The CARVUPP (Computer Assisted Radiological Visualisation Using Parallel
Prlocessmg) system js described as having similar objectives. i.e. interactive viewing, but
with the addition of being able to alter the rendering characteristics. The implementation
uses a 16 processor Meiko M 10 system, An initjal presentation [113] generates images
from a 44 slice, 128 x 128 data set in 5 seconds using all processors. A greater degree of
algorithmic detail is given in [114] where the application is exiended 1o 256 x 256 images
presented in pro-rata times. Whilst this, and many other Systems, are seen as
experimental. one highly acclaimed implemeniation in the surgical planning of facial
bone re_placement is in regular use [115,116,117). The system allows the surgeon to plan
corrective actions and produces the milling plan for the prosthesis which is to replace the
excised or missing bone,

As a final example. 0 industry, the projected use of the Meiko M 10 for volume
visualisation of simulation of air-flow over aerofoil surfaces is reported by Payne [118],
where the objective of replacing existing Fortran VAX code is considered. With 16

processors 1115 hoped to obtain rendered views at 5 - 10 frames per second.

7.10 Anulysis of Tevture

Novel methods of recognising features by therr textural quaiities are described by Smart
It19.1201. The applicauon is in the analysis of electromicrograph unages of clayey soils.
For 20 years this has been 3 manual process taking up t 15 hours per image. The images
are exanvmed for consistent domains, which are then analysed for directional rends The
witial approach concentrated on caleulating tntensity gradients within circular, ellipical
or reciangular -kernels 10 determine the existence of wimilar domains within each
micrograph. The work was carried out on PC-based and Meiko Iransputer sysiems. In a
recent development | 121] the Hough transform has been used as a successiul alternative
n establishing direcuonal characterisiics of domaims. Future work from the same team
will examine Hough-based methods as domain detectors themselves.

711 Knowledge Processing

Whilst the majority of image processing can be said 10 be a precursor to a decision

© process. the representation of those processes i a formalised. compentive manner, using

lransputer processors as in a Blackboard architecture is described by Brown and Fisher
[122]. This would appear 1o be an ideal use of MIMD in the emulation of the organised
contributions of experrs to generahsed problem solving, The chosen test domain here s
(;anny edge detection, where each of the siages n the algorthm are treated as a
knowledge umit Usig 64 wransputers a speed-up of 21.2 umes 15 achieved, although
when the power / performance ratio is examined. the overhead of the Blackboard is

cansiderable. The objecuve. however, is 10 enable evolunon of ciasses algorithms which °

will more readily adapt 1o computational tasks.

8. Future Prospects

The opppnunilics which the new generation of TS000 transputers [123,124] offer siem
largely from thewr order of magnitude improvement 1n processing and communication

P E. Undrill / Image Processing ’ 127

speeds. The history of computing would suggest that improvements in power, however
substantive, fail to satisfy requirements over more than just the short term. That the
transputer has been taken up by the image processing community {inier aiia) is
undeniable, what is questionable is whether it is the correct type of processor for image
processing asks.

In a straightforward example, we can show that for image rotancn using four
nearest neighbour interpolation, a SUN [PX 1s equat 10 at least 8 x T8O0 processors in
terms of execuuon speeds. It is also much quicker to code. E?y the ume the T9000 s
easily available the serial processor technology wall have improved yet'again. We have
seen that there are classes of tasks, and natural forms of implementation, for which the
dara distribution bottle-neck and communication overheads reduce quite considerably the
maximum achievable performance. Two approaches wiich would help to alleviate this
problem and maintain the viability of transputer technotogy into the future are:

-1 - . . .
« . Introducing additional alternauive processors into the compuiational architecture,
. Addressing the probiem of commumecation gverhead between processors.

8.1 Adduional Processors

Signal and image processing appticanons can often unlise the high performance
advantages which are 10 be gained from Dignal Signal Processing (DSPy methods. In a
typical examination of the performance ot an FFT algorithm by Dodge |125]. saturation
effects were seen to sel in al 5 or more processors. and an auached processor solunon
proposed.

Speedup Factor

oo N " i " i

1 2 3
No. of Processors ZTBUO)
' _g—Observed Performance —+ ldeal Pertormance

il -
Fig. 19, FFT pertormance sncrease with number af processors,

The chosen hardware for the design of a composite processing archiecture is the Plessey
chipset (PDSP family} capable of allowing a huirerfly operanon every 100 nanosecs.

_Using a circuit such as the one i Fig. 20, the projected process rale given in Table 1 will

" be achieved. A T425 processer organises main memory and controls the DSP functions.
Using swuched memory banks. the DSP chip can be kept busy for image sizes of
256 x 256 and greater, and the internal precision 1s such that one dumensional ransforms
of 2000K points could. in principle. be achieved. The use of formal logic | 128] was seen
as a substanttal advantage in the design of the circuit.

[T S

128 P.E. Undnil / Image Processing

GUENERATOR
h |

ADDRESS SWITCHING

IS]TQ.*;’] iy, - ADDRESS

DATA SWITCHING

] [}
FIRp DSp
MRGCESSOR

b J/

’
Fig. 20. FFT Accelerator System Diagram

8.2 Addressing the Communication Borrle-ncc.k:

Using datw domain parzllelism, it is desirable that processars siart work on their own
segments of dara as soon as 1t 1s available regardless of the amount of data still needing
to be distnbuted across the network. With increasingly large images. we observe
intialisation slages which are highly sigmificant when compared with the total
processing wne, A companion problem s that of passing results data back across the
chosen lopology when the tash-load of each processor is dependent on the delivered data
and carman be reasonably anticipated. The edge following example quoted by Byrne |77]
is a typwcal example. but the general problems of contour following or optic flow will
also demonstrate these difficutties. For each processor to begin ats racking algorithm
immediagtely #_recewes Ms regron. it 15 necessary to support both focal and globul
communicanon.

The abality 10 return results from anywhere in the network in a fire-at-witl mode
would reduce terminauon delays and also increase efficiency. Whilst the soiution to a
specific problem can be usually achieved by a complicated network of communicating
processors as in Fig. 21, the work needed is a undesirable uverhead for the probiem
solving as opposed to the compuring community. X

The underlying need is for an automanc mechanism Ffor the general routing of
messages across a network. not simply to the next nearest neighbour. The lack of a
system kernel facility- to support this kind of programming is one of the reasons
transputer implementation of MIMD is often perceived as difficull and why expected
performance increases are not always achieved. The use of an operaung system, such as
Helwos or TransIDRIS, which supports virual communication goes some way to
resolving the problem, but at the expense of averheads and losing the simplicity of the
QCCAM code.

The problems themselves are not a consequence of the CSP model, bur rather of
the implementation on 1o the available hardware. A better solution than the Operating
System approach would be to remove the need for the programmer to handle the inter-
processor routing restrictions imposed by the valency Itmuations of the transputer. This
can be made possible by the implementation of virteal channels which allow the

P.E. Undrill 7 Image Processing’ 129

unrestricted communication across intrinsically deadlock free networks whilst retaining
the purity and convenience of OCCAM.

HOST

N

Geaphua Control

L

D wode T
- = pog—

i

- ok 2

Fig 21. Schematic Approach to Global Message Passing

One of the perceived advamages for an image processing problem would be the
removal of the need 1o arbitrale hink access. as welt as the benenicial consequences of
conrol processes being consulerably sumphified by the use of dedicawed channels.
Processors can be ashed 1o operate i u much less constrammed manner. Another
advantage would be the ability to place specialist penpheral processors, such as a
graphics precessors, 1n a network locanon which minimises cemmunication traffic.

The TOUO0 design meorporates this philosophy within its hardware, atthough it
may not be avinlable on the imal release of the processor. Another approach which is
being folluwed is the use of the simulanon sofiware. The Virwal Channel Router (VCR)
|127.128]. based on the virtual QCCAM coftlp”er/conﬁgurer may well achieve the same
objectives. and 15 the subject of an-going research invesuigations which aim 10 oplimise
placement strategies and 1mprove the collection of run-ume performance data as a
necessary precursor (o achieving the dynamic allocation of processors (o tasks of
variable and unpredictable complexity.

9. Conclusion

Searching through the Science Citation Index for journal references is less productive
than mutially anucipated. Most of the pubhished material is in Conference Proceedings,
predominantly those organised by the SERC/DTI Transputer Intative and the Occam
User Group and these submissions have increased sieadily. Over the last four years an
average of only 10 - 15 papers in learned Journals bear the term fransputer and a sumilar
number include parafle! and image. Only 5 or so per annum nclude the term MIMD.
These numbers have remained remarkably constant over the period.

From a simple appraisal of the two most recent major UK conferences sponsored
by the SERC/DTI Transputer imnative, TA'S0 and TA?1, the number wustrial or
commerciul organisanons publishing heir apphications of image sing using

A~

ST AN Sy £

130 P.E. Undrill / Image Pracessing

transputers is limited | 6 out of 19 1n 1990 and 2 out of 29 1n 1991]. Some comments are
relevant here. Firstly, some of the work will have been done as part of an induskrial
contract 10 academic insuutions, secondly conference and publications in scientific
literature probably do not reflect the wue extent of industrial usage, and finally, at
present, the power / cost ratio of the transputer family is not particularly atractive. When
coupled with the perceived difficulty of wanslating exisung algorithms, not only into
paraliel code. as well as into an environment which places resirictions on the flexibility
of message passing. a limied involvement in industrial solutions has been apparent [129).
This 15 in marked contrast with the wide range of transputer assisted image processing
hardware which is avaifable. and the enthusiastic wake-up by the academic sector. It is
hoped that the improvemenis to the technolegy reported earlier will do much (o alier this
situation. - | '

The SERC/DTI] Transputer Ininauve. in a response to several of these issues set
up three Transputer Apphication Community Clubs (TACCs) of which the image
processing group {IPTACC) has played a significant role n coordinating conferences
and producing surveys of image processing hardware and sofiware. On the educational
;.ide it has orgamscd practical workshops at conferences and sponsored semmars on
image processing topics.

. In a review of the wansputer, past and present, [130]. future applications are
likety 10 have a significant bearing on image processing and visualisation. Typical
o?porlumlies are identified as being in hand hetd navigation devices, terrain mapping,
vul'lual reality and long-range radar, with a concentration on embedded applications in a
micro-packaging environment which is atypical of many of today's visualisanon devices.
Once we know how 10 produce, and interact with, high quality images in hand-held
ngcs. the new transputer products should be extremely auractive from the hardware
viewpoinl.

Nevertheless we should ask whether there is more to therr cost-eftective uptake
than hardware viability. The transputer started life as a physically small. embedded
processor, able be programmed 1o support 3 wide variety of special tashs. It
metamorphosised into a wide spectrum of PC and workstauon accelerators when 1t
became clear that the tthen) popular PC had rather himuted processing power What we
really need is a general paraliel paradigm into which the transputer can easily fit.

Is the problem of the take-up of any novel hardware essentially one of sofiware
support [i31,132]! Many forms of novel hardware have evolved rapidly n the past five
years. the (ransputer is a Iypical example of what happened at the beginming of that
period. The audience for high performance computing is not the computer scientist . but
the experimental scientist. the engineer and other techmical programmers whose Lasks
exceed the capacities of the fastest sequential systems. A typical quote is:

E “Nobody wamis parafieitsm. what we all want is performance!”

It 15 the fact that going 1o parallelism is the only way 1o achieve this that makes it a
necessity |i33]. Parallelism has been with us in some form since the mid-1970s. The
feasons for a sparsity of production level environments depends on the viewpoint of the
individual user.

Many modern problems require comptex applicaton to run in
reasonable time. Users want to further their science. but we still need
wechnical speciahists. and that makes for a slow development cycle.

Researcher

B

a

A

Ead

x

RN

P

® R

ST I I L

e et

T ‘h.';-_'.l‘

gl e

P.E. Undrul / Image Processing ' 131

Whilst academic successes in parallelisation of code o 0 -
10,000 ines for a parucular machine produced by a single group are
reported, commercial program suites are often much larger and
generated by different development groups o an overall design plan.
Often the opporuntties for parallelism are hmited and a new
sequential processor changes the viability of the whole exercise.

Progrummer

Generally interested only n the development cycle and the impact on
the learning curve of using the software and getting it into service.

Manager

Parallel sofiware is inherently more complex because of its incrgased dinrensionali(y.
We have seen examples above where constraiming the degree of flexibility radically
reduces the speedup. In general if we increase the speed of a serial‘processor by a given
factor, our program runs that much faster. Even if we did not Rave to thnk about
communicauon and architectures, we would sull have the mutodimensional problems.

What 1s needed are some standards for paraliel compuuing across a broad
scienufic front. In some arcas, notably numencal algonthms (BLAS), this may have
been achieved. With the increased dimensionaluty of programming there needs to be new
methods of wvisuahsing data, performance and algorithms. perhaps muludimensional
imaging and graphics can help here. Unless there 1s stability of architectures, and the
transputer scores well in this respect, and an wvestment in sofiware, hardware will get
more complex and more wastefully used.

We also need to pay auention (o the user environment. Even in the atypical case
of a Universily computing Community a recent survey showed that only 7% of users
were doing developmenial programming work. Perhaps what we need 15 more attention
to software lemplates rather than programming languages.

There remains the question of what is the most appropriate architecture. We have
seen the problems which the local memory aspect of lranspuiers brings o image
processing. but there are also nstances where distributed local memory 18 beneficial,
Nevertheless. luge shareable memory spaces would otwen make Lite a bit simpler for the
image processing specialist. Perhaps there 15 a need for heterogencous computing | 134,
which 1s then developed into a humogeneous whole trom the Users' VIEWpoInt,

Parallel compunng. i one or more paradigms, will continue to grow rapidly
the future, and 1mage processing, probably as a precursor 10 compuier vision will be at
the forefront of those disciplines requinng the puwer parallel computing provides. In
arder 1o survive. transputer methodology and its software support must be able 1o0:

+ " Handle the prospect of very large numbers of processors with the consequent
difficulties of indeterminacy and the need o access shared memory. Eventually
data transier and compitanon will become a single operation.

-+ Compete against increasingly cost-eftective fine grained technology which has a
intrinsic attraction for image processing.

- Provide programmers' assistants. capable of leasing out what a programmer
wanis 10 do and thereby opuimise on parallelisin and data flow.

- Provide confidence building robustness. satisly user expectations, adhere to and
help to establish standards. and finally.

« Appeal to the non-academic as well as the academic world 1w respect of its
tlexibilaty. rehiability and long-sianding support.

These are-the issues which the new technology must address and resalve.

132 P.E. Undrul / Image Processing

Acknowledgements

This review owes much 1o many colleagues. In parucular, to fellow members of the
SERC/DTI Transputer Initiauve IPTACC Executive especially 1o Mike Jane, Terry
Mawby and Peter Smart of the Secretariat, 10 Phil Ross, Chris Dodge, John Bymé. Tony
Lomax and Raymond Hutcheon from the Department of BioMedical Physics, University
of Aberdeen, and 1o the SERC, MRC. Professor John Mallard, the University of
Abe.rdccn and the Grampian Health Boardfor thermr encouragement and support via
€quipmen. resources and research studentships.

!nevnably there will be many workers in'transpuler based projects in image
processing who have not been mentioned, some of whom may have achieved objectives

and rcgul:s far in advance of those reported on here. To all of these there are sincere
apologies.

References

1 Ballard D.H. and Brown C.M., "Computer Vision® Prentice Hall, Englewaw) Clilfs, Ni, 1982,

12 Prait W K., "Digial Imape Processing” Wiley, New York, 1978

13} Rosenteld A. and Kak A.C.. "Digital Picrure Pracesuing”, Vols | & 2, Acadermuc Press, New
York, 1982,

4] Niemamn H,, “Pattem Analysis and Understanding” Springer, Berlm, 1990,
151 Wyseeht G, and Sules WS, "Colur Science - Coneepts and Mcethods, Quanntative Data and
Formutae™ 2nd Edihon, Wiley, New York, 1982,

16] Jayant N5 and Nall P, *Diguat Cohing of Wavetorms”, Prentice Hall, NJ. 1984,
171 Wintz P A | “Transtorm picture coding”, Prew TEEE,) (19723 809,
18] Kunt M. Benard M and Leonards R . “Revent resulis in high compression cading ™, JEEE Truns

CAS - M O98T) 1306 - 1336

9} Walberg G "Digatal iniage warping *, 1EEE Compuer Suc, Press, Lov Alamutos, 1990, pp 117 -
162,

110} Romenteld A und hak A € *Digital Prorure Prix essange ", Vol 1L Avaderrue Press, New York,
1982, pp 221 - 237

fany Hummeh R A “Histogram equalisation teuhniques . Compui. Graphics Vis, and Image Proc 4
L1975y 209, .

112} Pizer 5 M. Ambumn E.P, Austin 1.D. eral., *Adapine histogram equalisation and us variations”
Comput, Graphics Vis, and huage Proc. 39 (1987) 355 - 368 .

[13) Bamea D! and Silverman H.F.. "A class of algonthms for tast digiial ymage registiravon”, JEEE
Truns. Compur,, C-24 (1975) 935

[14] Walherg G., “Digital Image Warping*, IEEE Camputer Soc, Prese, Los Alamatas, 1990, pp 41 -

- 9. '
[15] Arun K.5.. Hudng T.8. and Bostein 5.0, *Least syuares firting of two 3D pount sets”, JEEE
. Trans Pun. Anal. Mach, Int , PAME-9. (1987) 698 - 700,

116] Oppenhenm A V., “Applications of Digitat Signal Processing”®, Prentice Hall, Engle woot Cliffs,
N 1978

117] Nusshaumer H.J.. “Fast tourier transtorm and convaiunivn algonthms”, 2nd Editton, Springer Ser.
Int Sc1, Vol 2, Springer Berhin, 1981,

(18} Brigham E.O.. “The tast tourier transtorm and is apphcations”, Prentice Hall, Englewood Chils,
Ni. 1988

119] Andrews H.C.and Hunt B.R.. "Digatal tmage Restoration”, Prennice Hall, Englewnod Chits, N1,
1975.

===

7

L O D L gt o AL,

=t

oo

-

&
&
HH
.
l“-’
A
o,
g
¥

gj}.“: -

s

1204
(21}

22}
123]

(29]
(25|
(26]
27}
1281
(291
30|
311
(321

1331

34]
135}
I36]
(7]
38|
1391
140}
[41]

142]

(431

[44]

P.E. Undrill / Image Processing 133

Canny J.F., “A computationat approach to edge detection®, IEEE Trans. Pair Anal. Muach. In1.,
PAMI-8 (1986)679.
Pitas |, and Venetsanopoulous AN, *Non-linear onder stausticy filters tor image filienng and
edge detection”, Signal Processing, 10 (1986) 395, '
Scrra)., "Image Analyss and Mathematical Momphology”, Acadenmic Press, London, 1982,
Haraliwk, R.M . Stermberg S.R. and Zhuang X., “[mage analysis using mathematical morphology™,
IEEE Trans Comput., C-18, {1987) 733 .
Sohoa D, "A survey of thresholding wechmques”, Comput. Gruphics Vis, and image Proc., 41,
(1988) 233 - 260,
Elliot H. and Stimivasan L.,”An appheation of dynanuc programming to 4:qu:nlial L)undary
esumauon”, Comput. Graphics Vis. and Image Proc., 17 (1981) 291 "
Pavlidis T., "A review of algorithms tor shape apalyss”®, Compnr. Grapmcjs Vis. and tmage Proc.,
7 (1978) 243 '
Duda O, and Hart P.E., *Use ot the Hough transtorm to detect lines and curves in pictures”,
Conumun, ACM 11 {1972},
Ballard D.H., "Generalissng the Hough transtorm 16 detect arbitrary shape”, Patrern Recogainon
13(1981) 11,
Zucher S.W., "Region Growing, Chikdhuod and adolescence”, Compui, Graphies Vis. and Image
Proc., 5(1976) 382. .
Ohlander R , Prce K. and Reddy DR, “Picture segmentation using a recursive region splittng
method *, Compur, Graphics Vis and Image Proc. 3 (1978) 313 .
Horownz S.L. and Pavhidis T., “Puwture sepmentation by 4 tree traversal algorthm®, J. Assoc
Comput, Much . 23 (1976) 368,
Haralich R A . "Statstcal and struciural approaches w texture”, [0 Proc A pngt Jouwm Conf on
Purttern Rocagmtion, Ky 3978, pp 435 - 69
Hawdins 3 K . “Textural properties tor patiom recopastion” In Pieture Processing and
Paychopictonies, Ed B S Liphin & A Rosentekd, Academic Press, New York (1970, pp 347 -
170
Fiynn ME., “Some computer urganssauons and thar ctecnteness™ [EEE Trans, Comprr C-21
{1972) 948 - 900
Sharp } A, “An loteeduction to Distnibuted and Parallel Compunng ', Blackwell Stienutic Press.,
Oxtord, 1987 pp 1252
Harp G., Baher S. and Weber H. “Image Provessing ™, In: Transputer Applicauons, Ed G Harp.
Pitman London. 1989, pp 170 - 203
Hey A.. “Suientific Apphications” In- Transputer Applications. Ed G. Harp, Puman, Lordon,
1989, pp 204 - 220
Brownte R F. and Hodpson R.M., "Mapping image processing operalions ORito transputer
networhs, Microprocessors and Microsisiems 13, 3 (1989) 203 - 211
Byme J.P.. *Investigaton of parallel computing iechmgues in cinical image processing”, Ph.D.
Thess, University of Abendeen, 1992,
Gordon G T, “Image Resanstruction From Projeciions the tundamentals of compulerised
tomography ®, Academic Press. New York, 1970.
Kingswood N, Dagless E L., Belchamber R.M., Betterwge Do, Lilley T. and Robertson 1.D M.
“Image Recanstruction using the transputer”, JEE Proc. 133, No 3, 139 - 144 (1989).
Keltett G, and Duwsram T S.. “Parallel Algonthms tor Tomographic Image Recanstruction®, [n:

Proc. 3™ fmil, Cunf. on Intage Provessing and us Appiieanons, 1EE Press, London 1989.pp 178 -

181,

Lomax AJ.. "Methadologies tor the 3D display ot Volumetn data and implementanon on a
aralle] provessing system”, Ph.D Theais, Univeraty ot Abcrdeen, 1992

Jones, G., “Etficient moltiple bultening i oweam’. Goean User Newsteter, 11 (1989) 36,

e - T e e e

134

145]

{48

(47]

(48]

[49]

1501

[51}

152}

153)

i34
1551

156)

157

158)

159

1501

161)

1621

163i

P.E, Undrill / Image Processing

Image Processing Transputer Applications Commuruty Club (IPTACC), Directory, SERC/DT!
Imuanve in the Engineering Applications of Transputers, Ed. T, Mawby, June 1991,

CookR.S, Geersienberger, 1., Lawrence C. and Neamutu H., "Applications of a parallel image
processor”, In: Proc 157 WoTUG Conf, Transpuing 91°. Ed Welch, Styles, Kunii & Bakers, 10§
Press Amstcnlam, 1991,pp 15. ’

Harp ! g and Weher H.C., “Image processing on the eeconfigurable transputer processor®, In:
Prac 7% QUG Techmcal Meetng, 10S Press, Amsierdam, 1950

Hirsch E., Paillou, P, , Muller, C. and Guggenbach V., "A versatile paraliel computer architecrure
for machne vision®, In: Proc 1% WoTUG Conf.. "Transputing 91". EJ. Welch, Styles, Kumi &
Bakers, [OS Press Amsterdam, 1991, pp 828

Edward: j. ¢;;J Silluoe, 1., "The design of a real time 3-D vision system for object identification”,
In: Proc. 12" QUG Technical Meenng, Ed. §.Tumer, 1990, pp 198, .

Sead N L., Houghton A.D., Lander M.J. and Goodeneough NLJ., * An enhanced transputer
maodule tor real ume image® In: Proc. 379 oy Conf. on Image Processing and us Apphicanions,
JEE Press, London 1989, pp 131 - 135,

Ross P.G.B., Lomax A.{,. and UndrHl P E., "Medical image processing ustng transpurer based
hamdware®, In: Proc. 379 tngt, Conf. on imuge Processing ond ns Applicanons, 1EE Press, London
1989, pp 171 - 1 77.

Byme J.P., Row P.G.B., Undnll PE, and Phillips R.P.. *Feature based retinal image registration
vwsing tansputens”, In: Applications of Transpuiers 3, Ed. T.S. Dunvani, W.A. Sandham, J.J.
Suraghan & S.M. Forbes, 10S Press, Amsterdam. 1991, np 687 - 692. .
Lomax A J., Raw P.G.B. and Undrll P.E.. “Parallel procesng techmques tor the interacone
dnsplay ot volumetric data sets®, In: Appiscaons uf Trampurers 3, Ed. T.S Dutrans, W A,
Sandham. J 1. Soraghan & § M. Farhes, 10S Pross, Amsterdam. 1991, pp 136 - 141,

Smart P, “Commercial Sotware tor Image Processing by Tramsputer™, SERC/DTI Trunspuaer
bungive Masvhor, BEd. T, Mawhy, Apnl 1991, pp 72 - 76. .

Crookes D, Momrow P2 and M Parland P <AL LA parallel image processing language”®, JEEE
Pron 1A, Mo, 3, (L1989 176 - 182,

Maorrow P Crookes D, and Kurkpatrn k., PC Milligan Pand Scot NLS. "A companisan of two
Avlaons for programmuing image priwessing appli ations on tansputers” In: Developments uang
OCCAM. Proc. 8" Technial Occam Meeung Ed. J.Kemuge, 1988, pp L - 9.

Crowkes D, Morzow P). Shant 8, and MuClatchey, |, "An environment tor developng
conurrent soltware tor transputer hased imuge provessing”, Microprowessing and
Mwcraprogranunig, 27 (1989) 417 - 422,

Morrow P and Perote R H., "The design and implementation of low-level processing
algornbms ™, In: Parallel Archiectures und Computer Vision, Oxtond Scicnce Publications, §990,
p 243 - 2650,

Dc\-\' .M. Wang H, and Webh J LA, "Apply : Macbine independent image hnxcs:ing language
and its implenentanon on a Meiko Computing Surtace”, [n:Prog 5th Alver Vision Canf., 1989, p
39,

Hernderon T.B., Symanski J J. and Bromley K . “Sottware development on the video transputer
amay”, In: Proc 51 NATUG Conf, 10S Press, Amasterdam, 1990,
Rygol M.R.. Pollard S, Brown C. and Kay I.. "MARVIN & TINA: A multi-processor 3D vision
system.In: Appitcations of Transputers 2. Ed. DJ. Pritchard and CJ.Scot, [0S Press,

Amstenlam, 1990, pp 218 -225

Rygol M R., Pollard 8, Brown C..*A Mutiprocessor 3D Vision system lor pick and place”,
InzPrac. Bioesh Muchine Vison Club, Univerun of Sheffield Press, (19901 pp 169 - 174,

Brown C. and Rygol M., "Marvin: Multiprewessor archilieemre tor vision™ In, Proc. 10th Occom
User Group Meenng, 10S Press, Amsterndam 1989,

[64]

165]

(66}

167}

168}

1691

[70]

|

172)

174

1741

173}

[76)

1771

78]

179

180]

P.E. Undrill / Image Processing 135

Khan G.N. and Gillies D! "Transputer hased implementation of as paratlel machine visron
method for endoseope naviganon®, In: Applicanans of Transpurers 3, Ed T.S. Du ., WA,
Sandham, J.J. Soraghan & S M. Forbes, 10S Press, Amsterdam 1991 pp 699 - 70«
Fauhurst M.C., Abdel W.-%hah H.M.S. and Brittan P.S J, “Parallel implementation of image
classifier architectures using ransputer arrays”, In: Proc, 34 iy, Conf. on Image Processing and
its Applicanons, |ZE Prcsls, London 1989 pp 136 - 140
Fairhurst M.C., Brinan P.Iand Cowley K D, “Transputer based models fnt!thc parailcl
implementation of imagc 'r:iamﬁcanun algonthms”, in Ap,rdt'v:a}rpns of Transputers 3. Ed. T.5.
Durrant, W A Sandham, 3§ Soraghan & 5.M. Forbes, 10S Presd, Amstendan: 1991 pp 559 - 564,
Tregdgo RW S and Downton A.C., “Scalable parallclism for embedded vision anplicanons; The
gencralinedd tree pupeline”] In Applicanons of Transputers 3, Ed TS Durrani, W.A. Samiham,
1.). Soraghan & S M. Forbes, 10S Press, Amstendam 1991, pp 383 -387.
Lowto R.A L, Morgan A D, Johnson A8, and Thumas B.T, "A wansputer based automatic
number-plate ra:)gnﬂmn!sys[cm‘,ln: Apphicenens of Trunspurers 2, Ed. D). Pruchand and
CJ Scott, [0S Press. Amsterdam 1950,
Lades M, Varbrugpen) CI and Wurtz R P, "Recogniung taces with a transpawter tarm” la
Applicanons of Trunspur:rrv 3, EJ. TS Durram, WA, Sandham, J.J, Soraghan & S.M. Forhes,
KOS Press, Amnierdam 991 pp 148 <153,
Mortrow P.J, and Crookes [, *Parallelising an Image sepmentanon and analysis system for
intrared images™. In- Applications of Tramsputers 3, B T.S. Durram, WA, Sandham. JJ.
Suraghan & S M. Fnlhc.\.llOS Press. Amsterdam 1991 pp 377 - 382,
Lin W_and Fraser DA L '[ldcnllricannn ot 3D ohieuts trem 2D obeeis”.In: Appltcarions of
Tramvprters 2. Ed DL Pratchard and C.J Scent, (08 Prews, Amnterdam 1990 pp 203 - 208.
Hulden M., Zeanerly M). and Muller J-P L "Using a transpuler array parallel sterco matching ot
SPOT ~atethite inages”. In Applicanans of Tramspaters 3, Ed. T.S. Durtani, W A Sandham, 1),
Soraghan & S0 Forbes /108 Press, Amisterdam 1991 pp 154 - 159
Curtis KM and [luund.u;r: A TA parallel prnesany engine tor n-tuple pattern recognshun”, In:
Appiwatins of Transpaiers 2.Ed D) Prochand and €) Scoet, [0S Press, Amsierdam 1990 pp
233239
Netherwood P, Barnwell| Poand Forte P An amomatad sl inspecnion systenn bor surface
mount asserthlics and \ol‘dcr oines” ke Applrcattom of Transprrers 3, B TS, Durran, WA,
Sandham. J J. Suraghan & § M. Forbes, 108 Press. Amsierdam 1991 pp 530 - 535
Murmehdi M . "Product label inspection using transputens™, o, Applicanans of Transpuers 2, Bd.
D.J. Prichand and CJ.Scdit 10S Press, Amstenam 1990 pp 408 - 416. i
Yeo K.P. Cheung C.C.. Ord A and Brown W, A,, "Determination of Rock Fragments using a
transputer drray . In: App;J'(attens of Transpaers 3, B T.S Durrani, WA, Sandnam, 1J:
Soraghan & S M. Fnrhn:s.! 105 Press, Amsterdam 1991 pp 142 - 147
Ali AT, and Dagless E.L.. " Automarte tratfic monitunng using transputer image processing
system®, In Applicanons of Transputers 2, Bl D), Pruchasd and CJ.Scou, 10S Press,
Amsterdam 1990 pp 209 - 210
Wang H Brady M_and Page. |, "A tast implementaton bor computing optic low and 1t
implementation un a tragsputer arcay " In: Proc, Brisk Machine Vivon Club. Unuveraty ot
Sheltield Press, 1990 pp 175 - 179,
Chalaby N.A. and Durrara T 5., "Transputer applivaniens o the image How ticld” In: Applicanons
of Transpurers 3, Ed TS Durrani, W A Sandham, 1.J. Soraghan & S M. Forbes JOS Press,
Amsterdam 1991 pp 394 - 399
Ellis T.J,, Hung T.W,R and Omarsuayache S., *Structural clements o cobour imapes: A parallel
approach”, In: Apphicanions of Transpurers 3, Ed. T.8, Durrani, W A_ Sarxlham, J | Soraghan &
S M. Furbes, [0S Press, Amsterdam 1991 pp 536 - 537

ol

| S

136

(81]
82)
(83]

(84}

[85)
186)

L
{88]

183
(50

91

193
194

{95]
196]

197]
(98]

199)

P.E. Undriil / Image Processing

Stephen G.A.: Taylor C.A. and Dagless E.L, "Real ime analysis tor dynamic displacement
measutement”, In: Appitcations of Transputers 2, Ed. DJ. Prtchard and CJ.8cou, [0S Press
Amsterdam 1990 pp 211 - 217, .
MeAllisier H.G, Ayre J. and McCullagh P.J., "Topographic bram electrical potential mapping”,
In: Appticanons of Transputers 3, Ed. T.S. Durram, W.A. Sand m, 1), Soraghan & S.M. Forbes
[0S Presy, Amsterdam 199) pp 524 - 529 : o '
Doan D., Hulskamp J. and Maher K., "An application of transputers n digital fluoroscopy”, In:
Appiications of Transpuiers 3, Ed. T.S. Dueram, W.A. Sandham, 1. Soraghan & 5 M, Forbes
105 Press, Amstendam 1991 pp 693 - 697, ' '
Cao X, Deravy, F and Rodd G., “Paralle) implcmqmnon of the mned Hough transiorm on
transpuicr networks®, In, Appiicarions of Transpulers 1", 108 press, Amsterdam, 1989,

Lotuto R.A , Dagless E.L., Milford DJ., Morgan A.D,, Momissey LF. and Thomas B.T, *Hough
mmform tor ransputer ammays®, In: Proc. 379 tny. Cony. on Image Processing and s
Apglications, IEE Press, London 1989, pp 122 - 130,

Costa Lda-F., and Sandler M.B., ‘Implementation of the binary Hough transform in a pipehned
mult-rransputer architecrure”, In; A Ppiiations of Transputers 2, Ed. DJ, Pritchand and C.1 5con,
[0S Press, Amssterdam 1990 pp 150 -1 55,

Taylue D R., “Implementing the Hough transiorm n paraliel using & wanspuer network”, M.Sc
thesis, Umiversity ot Aberdeen, 1989, '
Eghtesachi S, and Sandler M., “Implementation of the Hough Trans form for intermadiate low level
vIin on a tranapulter actwork®, Microprocessors aned Microsstems 13, No. 3,(1989) 212 - 218
Yang O and Hodgson D.C., *Real-time maotion tracking using the Hough Transtorm®, [n:
Applications of Trunsputers 3, Ed T.5. Durran, WA, Sandham, i.J. Soraghan & 5.M. Forbes
108 Press, Amsicrdam 1991 pp 548 - 553 ‘
Hall G.. Tervel TJ.. Scnior J.M. and M urphy LM | A now Uiserete radon transtorm cnhanuing
linear teatures wn nony images”. In' Proc. 37 1oy Cont on fmuge Processing und us
Appircartans, 1EE Presa, London 1989, pp i87-191.

Hall G . Terrel TJ.. “tmplementation of the Radon franstorm wang a dynamiaily swiched
transputer neowork, In: Apphicunons of Trampurers 2, E&. D 1, Prtchard and C.J.Scot, 10§ Press
Amsterdam 1990, pp 156 - 163, ‘
Barrew 5., Baihm D, Del Guerra, A, “Use o o transpuier vystem tor tast 3D reconstruchion 1n
3D PET" IEEE Trany Nuud Sui NS <37 (19903 812 - 816

\r\nllum..an N, Athins, M.S, and Rogen J.G , *A tomopraph paralicl processing Jata acquisition
system®, {EEE Truns. Nucd. Sci. , NS - 36. (1990) 1047 - 105).

Athans, M.S., Murray D, and Harrop, R., *Use of transputers 2 3D Positron Emussion
Tomopraph®, IEEE Trans. Med. fmag. ML-10,3,(1991) 276 - 283, .

Zadehhoochsh M., Hames, T.K.. Blott B H. and George R F., "A transputer implemented
;lsg:nlhm tor clectrical impedance tomography”, Clin. Phvs. & Physiol, Meas. 11, 3, (1990) 223 -
Zapata E.L, Benavides [, Brugucra J.D. and Carazo J. M, “Image reconstruction on transputer
nerwarks™, In: Applicanons of Transputers 2, Ed. D.J, Pritchard and C.).Scon, 108 Press
Amsterdam £990. pp -164 - 171, '

Mukai R., *Parallel processing ot quadtree images”, In Prac. j*¢ Jupan QUG Intl. C(ir:f. I0s
Press, 1990 .

Hull M.E.C.. Frazer J.H, and Millar R.J , “Transputer hased mamipulation of computed
tomography imdges”,pp 146 - 149,

Hull M.E C., Frazer J.H and Mllar R, *Octree meudelling of computed tomography images”,
{EE Proc 1, 137,3,(1989) 118 - 122,

[100)

(ol

[162]

[103]

1104]

[103]

{106]

ey

[108]

1109)

[110]

1niz)

[113]

14}

(s

(16

P.E. Undrill / Image Processing 137

Cook, R. and Sandys-Renton 1, "A parallel segmentanon algonthm {Merge using Moments) fror
SAR images”, In. Applicuttons of Transputers 3, BA. T.S. Durraru. W.A. Sandham, J.J. Soraghan
& 5. M. Forbes, 1OS Press, Amsterdam 1991 pp 311 316,
Crookes D., Morrow P.E. and Phihp G., “The development of a transputer based image data base”,
In: Apphicattons of Trunsputers 2, Ed. DJ. Pruchard and CJ.5cou, [0S Press, Amastendam 1990
rp 89 - 195,
Cong M N, Rudberg B., Soraghan | J , Durram T.S. and Marshall S., *Transputer based image
codec for local area network”, In: Applicanons of Transputers 3, Ed T S. Durrani, WA
Sandham, .1, Soraghan & S.M. Forbes, FOS Press, Amsterdam 1991 pp Sﬁ.l - 547,
Chong, M N., Seraghan 1 J. and Durrani. T.5., *Parallel implementation and analysis of adaptive
transtorm coding algonthms’, In. Proc IEEE Ind. Conf.1n Awus{:cs. Speech and S1gnal
Processing (1CASSP 90}, IEEE Press, 1990, pp 997 - 1000,
Chong M.N, Soraghan J.J. and Durrani T S.. *Pipchined tunctional algonthms, data pariioning
tor adaptive transtorm coding alponthms”, JEE Collugunum 'Parullel Architectures for Image
Prucessing Applicanons’, JEE Press, Lomdon, 1991,
Gntfiths | W R., Chia L T. and Lu GJ., *Image compression using iterated function systems”, In:
Appliatons of Transputers 3, Ed, T.8, Durrani, W A Sandham, JJ). Soraghan & S.M. Forbes,
10S Press, Amsterdam 1991 pp 554 - 557,
Zimmerman P, “Visual simulation by means ot a trafsputer nenwork tor a driving simulaios”, In:
Applianons of Transputers 2, Ed. DJ. Prischand and C.J.Scou, 105 Press, Amsterdam 1990 pp
13-24
Trcot C, and Fest J-M | “Image synthesis tor tielevision on a Volvox transputer basad machine”,
I, Apphicatroay of Tramspaters 2, Ed DJ. Pruchard and CJ Scou. 108 Press, Amsterdam 990
pp29-33
Huishamp W, Elgerbuizen, P M Langenkamp A A and van Licshout, P.LJ., " Visualisaton ot
AD empincal data: The Voxel Provessar®, In, Proc 1P QUG Technical Meenng, Ed Bakkers,
108 Press, 1989, p B2 -
Kawar T, Ohmishe, M., Abehr), and Ohnasta H, "Ray tracng tor pazallel image generation”, In:
Prin A" Austrabian und OUG Cont . Ed Bonsamuer, Hintz and Hubshamp, 1OS Press,
Amsterdam, 1991, pp 89,
Purgathaler W and Zoiiler M, “Contiguning transputees 1or tay wraving”, In Applicunons of
Tranypucers 1, 1OS Press, Amstendam, 199
Lomax A)] and Undrldl P.E., "Interacuive 3 dimenvional and dynamic display ol gated bload pool
tomograma” In, 30 Imaging Techniques tor Medrene', [EE Digest 1991083 pp 7/1 - 34,
Cannon S R. and Allan S.J., A parallet processng sub-sysiem tor the gencraton of 30 cardiac
images trom CT7, In Proe 3 NATUG Cont Transpuicr Research and Apphuatons ¥, Ed. S.
Wagner, 108 Press, 1990, pp 75
Tyrell)., Farzad Y. Riley M and Winierboitom N, "CARVUP Computer Assisted Radinlogieal
Visualisation Using Parallel processing™In Appltcatiens of Transputers 2, Ed, D J. Pruchand and
CJ.Scont, 1OS Press, Amstendam 1990, pp 172 181, .
Tyrell 1., Farzad Y , Riley M. and Wiaterbouwom N, "CARVUP Computer Assisted Radiological
Vasualisaton Using Pacallel provessing”, In 30 tmaging in Medine', Eds K H. Hotne, H Fuchs
and S M. Pizer, Nato ASL Series F, Vol. 60, 1990 pp 363 - ¥75
Tan A C.. Richards R and Linney A.D . "3D medival graphics - Using the T80O transputer, In;
‘Developments in using OCCAM', Proc. 8% QUG, 105, Amstendam 1988 pp £3 - £9
Linney A D., Grinrod § R, Arnidge S.R. and Moss ILP, "Three dimensional visualisation of
computerrel tomography and laser scan data for the simulanon of maxillo-facial surgery”™ Med
Informuires 14 (1989) 109 - 121,

138

(117}

(18]

[119]

[120]

1

{122
{123
[124)
[125)

[126)

[127)
[128]
1129]
1y
T
(LR

iy

{134

P.E. Undrif / Image Processing

Tan A C, and Ruchards, R » "Develaping the MG Warkstation - a muln transputer based modical
graphics system’In: Proc 13 woTuG Conf. Transpung 91°. E4. Welch, Styles, Kunis &
Bakens, 105 Prevy Amsterdam, 1950 Jp 801,

Payne B I, 3D Paraile} visualisanoen®, in: Apphicanens of Transpurers 2, Ed. DJ. Pruchaed and
CJ.Seor, 108 Press, Amaterdam 1990 pp 182 - |85,

Smant P, and Leng X., “Textural analysis by tamsputer”, In: Applicanuns of Transpuers 3, Ed.
TS. Durrani, WA, Sandham. 1J. Soraghan & S.M. Forbes, [0S Press, Amsterdam 1994 Pp 240 -
247, ,

Smart P, and Leng X., "Impraved methods of Texcural analyws”, In. Applications of Transputers
3, E&. T.S. Durram, W.A, Sandham, 1. Soraghan & S M. Forbes, [0S Press, Amsterdam 199
pp 323 - 328, ' ,

Costas L da F, Leng X, Smart P and Sandler M.B., “Analysis ot clay microstructure by
Rnsputens”, In: Applicanions of Transputers 3, Ed, T .8, Duman), W A, Sandharm, j.J, Sorughan &
S.M Forhes, 108 Press, Amsterdam 1991 pp 317 - 322,

Brown M.D. and FuherR.B., *A distnbuted blackboard system tor vinion applicatons® [n; Proc,
British Muchine Vision Club, Univeraty ot Shetticid Press. 1990 pp 163 - 168,

“The T9000 Transputer Products Overview Manual®, Inmos Databook Series, 1991,

Dyson C., “Inmuos H architecture revealed”, New Electrames, 23, 8(19905 2) 24 \

Accelerator 1or a transputer hased Hnde processing system”, Medual & Brol, Eng. and Compus..
2%. Supp. Pr. 1. (1990) 91

Debbage M., Hill M. any Nicale D.. *The virtwal channed rovicr” tRelease Nutey) Transpuier
Tex hnuiogy Solutiony, Universiy of Suuthampton 1994

Pountain . *Virtul Channels: The next gencration o twanspuies” Bvie { Eurnpean & World
Lcany 15, (199004, 3 12,

New Scrennt, I 1991) 1766, 29,

W hithy -Stevens, €., “Tramsputers pust and Present’ JEE Micro 10,6, (1991 16

Pancake, C M. S are Mupportior parallel computing * where are we headed”, Conun, ACM
H a9, 6. s,

Hauk). “On the PEAMise Of general punpose parallel vomputing”, Paraiic! Compuing, 10. 3,
11989 261 - 275,

Sumimn H.D . "Are highly parallel Sysems ready b pime tme”, fuif J Supercomma, Appi.
401990} 90,

Nudd, GR . Atherton T)., Howarth R.M, ct a),, TWpm A mulisple-simd architecrure tor image
Processenp ™ In' Proc, 374 gy Cunt. un fmgge Provexsing und its Apphicatiuns. |EE Press,
London, 1989, pp 161 - 165,

[T

P I T ——

— APENDICE

OCCAM 2 Toolset |

Transiech Parallel Systems Corp.
20 Thornwood Drive

thaca, NY 14850-1263

Tal: (607) 257-6502

Fax: {607) 257-3980

IMS D/7305
IMS D4305

occam 2 Toolset

Product Information

Configuration
Dascrptont

Natwork
Configurer

Canfigured
Executable

KEY FEATURES

L2

T2

occam compiler for INMOS transputers
Excellent complle time dlagnostics
Optimization of object code

Tools to support separate compilation (!Inker,
librarian) '

Tools for creating and loading multiprocessor
programs

Support for all first generation INMOS transputers
{T2xx, T4xx and TBxx)

Breakpointing and post-mortem symbolic debugger
for multlprocessor programs

Automatic make file generalor

T425 transputer simulaloer

Support for assembler inserts in occam
Support for EPROM programming

Automatic routing of channels through a transputer
network

Listings of where variables and functions reside in
memory

SGS-THOMSON

Aoz et s

KEY FEATURES

« Suppont for placement of cods and data in user

specilied memory focations

e Small runtime overhead

+ Consistent lools across PC and Sun 4 hosts

+ Support for mixing 0CCam with C cods compiled

with the D7314 and D4314 tooclsets

+ Supportfor dynamically loading programs and func-

tions

+ Sclenlific libraries
« Compalibility with INMOS INQUEST advanced

development envitonment

DESCRIPTION

The INMOS Professional occam 2 Toolsets provide a
complete high quality software development environ-
ment for all T2, T4 and T8 series transputers. The tool-
sets enable parallel programs to be built for single
transputers or mulli-ransputer nelworks comprising a
mixture of transpuler types. Nelworks of processors
are supported by a software through-routing configurer -
thal greatly simplifies the placement of code and
communication paths in complex applications,
Improved embedded application support Is provided
by bath configuration and symbol map utilities,

INMOS is a member of the SGS—THOMSON Microelectronics Group
42 1600 01

March 1983

Contents

1 Introduction e R
1.1 APPHCAIONS . vttt e

2 ProductQuerview Pt
2.1 Mapping occam Programs Onto Trahsputer Networkscciviiivreennnan.
-2.2 occam 2 development system e
2.2.1 [T+ - T 1= g PP

222 Mixed [aNguage Programsttt ittt

223 Support for embedded applications o il

224 Placingcode anddatacciviiiniirrennniiintarnacrey

225 [T T T] (1= o T 2P

226 DebuUggINg . .. e

227 Optimized code generationot iieiiirienrarireenen.s

228 ASSEMbIEr INSBRSttt i e e

2.2.9 Improvements over previous releaseso vt isiinininas

3 occam Toolset Product Components Citrenceceanenns ceserns
3.1 [0 o W01 1217 1 (o LT P

32 SoftwareTools B R TR P ER R T PR

3.3 Softwarelibrariesoo i D

B4 SOUICE COTB ... ettt e e e e

4 Product Variants Ciersasasasteearennnunens teaaeasanen
41 IMSD7305IBMPCversion S PG
411 Operating requirementsot

41.2 Distributionmediac i iiiii ittt i

42 IMSDA305 SUNAVEISION . ..ottt ittt i e aannan e aarrarss s
421 Operating requirementsot iarienan,
422 Distribution Mediacvuieiiiiirri e

5 Supportieiiiiieieianina. “iesiensnunerusnesEnasnsanans
6 Ordering Informationccovveviiiciciesensen

14

14

14
14
14

14
15

15

15

. .IMS D7305 & D4305 Professlonal occam 2 toolset 1

1 lntroductlon‘

The INMOS Professional occam 2 Toolsets provide a complete high quality software development envi-
ronment for all T2, T4 and T8 series transputers. The toolset enables parallel programs to be built for single
transputers or multi-transputer networks comprising one or more transputer types. Networks of proces-
sors are supported by a software through-routing configurer that greatly simplifies the placement of code
and communication paths in complex applications. Improved embedded application support is provided
by both configuration-and symboel map utillties.
1.1 Applications

+ Single processor embedded systems

e * Multiprocessor embedded systemns

» Porting of existing software and packages

» Massively parallel applications

» Evaluation of concurrent algorithms

-+ Low cost single chip applications
« Low level device control applications

» Scientific programming .

 Education in concurrent programming

2 Product Overview

The INMOS occam 2 Toolsets provide complete occam cross-development systems for transputer
targets. They can be used to build paralle| programs for single transputers and for multi-transpulter
netwon-z onsisting of arbitrary mixtures of T2xx, T4xx and T8xx transputer types. Programs developed
with the inolset are both source and binary compatible across all host development machines. The INMOS

occam 2 Toolset is available for the following development platforms:

IMS D7305 oceam 2 Toolset for IBM under MSDOS (Single user licence)
IMS D4305 occam 2 Toolset for Sun 4 under SunOS (Multi-user licence)

The occam programming language is a high-level language which supports the design and implementa-
tion of concurrent systems on networks of processors. The occam languagels describedin the following
publication:

occam 2 Reference Manual, published by Prentice-Hall, ISBN 0-13-629312-3.

2.1 Mapping occam Programs Onto Transputer Networks

The 0ccam programming model consists of parallel processes communicating through channels. Chan-
nels connect pairs of processes and allow data to be passed between them. Each process can be built
from a number of parallel processes, so0 that an entire software system can be described as a process
hierarchy. Each channel has a PROTOCOL which determines the types of messages that may How across
it. This model Is consistent with many modern software design methods.

Figure 2.1 shows a collection of four processes communicating over channels. The multiplexor
process communicates with a host computer and hands out work to be done to one of three worker
processes. Results from the workers are then returned to the host by the muitiplexor. The following exam-
ples show how this collection of processes can be described in occam and how the occam program
can be mapped onto a network of processors.

The occam example in figure 2.2 illustrates how to program the collection of parailel processes In
figure 2.1. it assumes that the multiplexor and worker processes have been compiled and the code
has been placed in the transputer code files mux.tco and worker.tco.

hostout hostin

mulitiplexor

_ workser.out,
worker.in

worker[0] waorker[1] worker[2]

Figure 2.1 Software network

—~———

IMS D7305 & D4305 Professional occam 2 tooiset 3

#INCLUDE "hostio.inc” —— contains 3P protocol definition
$USE "mux.tco”
#USE "worker.tco”
PROC example (CHAN OF SP hostinput, hoatoutput, []INT memory)
[3]CHAN OF SP worker.in, worker.out:
PAR — 7
multiplexcr (hostinput, hpstoutput, worker . out, worker.in)
PAR i = 0 FOR 3
worker (worker.in[i], worker.out({i])

Figure 2.2 Paraliel processes in occam

The occam compller in the toolset can be used to compile the program shown in Figure 2.2 and preduce
a code file to run on a single transputer. Alternatively It may be desirable to distribute the program over
a network of processors. The program can be mapped onto a network using the configuration tools. A
configuration language is used to describe the transputer network, and the mapping of the occam
program onto the transputer network.

The following three examples llustrale how to configure the example program for a transputer natwork,
In all cases we assume the multiplexor and worker processes in the software network have been
compiled and linked into files mux. lku and worker. lku respectively. Three hardware networks are
considered: the single processor network shown in figure 2.3 and the four-processor networks shown in
figures 2.5and 2.7. :

Figure 2.4 shows the configuration text for mapping the software network in Figure 2.1 onto the hardware

shownin Figure 2.3: a single T805 with 1 Mbyte of memory, connected to the host by link 0. Inthis exampie

all the processes run on the root transputer. It might be usetul to test this configuration betore moving to
a four-processor network. : e

Figure 2.6 shows the configuration text for mapping the software network on to the hardware shown in
figure 2.5; four TBOS5s, each with 1 Mbyte of memory. in this example the multiplexor Process runs
on the root transputer while the individual workexr processes run on each of the other transputers.

In figures 2.5 and 2.6, processes on different processors communicate with each other over transputer
links. Each channel pair is mapped onto a single link. If the network is as shown in figure 2.7, then the
channels cannot be mapped onto the hardware so easily. In this case the configurer can automatically
add communication routing processes onto the transputers so that the user processes can be mapped
onto the processors as required. Figure 2.8 shows the configuration fite for this network. '

Each configuration example includes a NETHORK description section which describes how a particutar
network is connected. Since many applications can be run on identical networks it may be appropriate
to Include this definition from a separate file. The RETWORK descriplion is followed by a CONFIG section
which is virtually identical to the parallel process structure shown in Figure 2.2. The parallel process struc-
ture has been extended with PROCESSOR directives indicating which processor s to run each process.
The description of the software network is almost identical in all cases; only the allocation of the worker
processes is different. If a MAPP ING section is used, it can be arranged that the software Is identical in
all cases.)

For each multiprocessor system architecture, the connection of multiprocessor and worker processes
is the same; only the hardware description is changed.

X

HOST

hostlink
- 0
T805
root Mbyte

Figure 2.3 Hardware network 1

VAL M IS 1024*1024:
NODE root:
ARC hostlink:
NETWORK ONE.PROCESSOR
Do)
SET root (type, memsize := "T805”, 1*M)
CONNECT root[link][0] TO HOST WITH hostlink

#INCLUDE "hostio.inc”
#USE “mux.lku”
#USE “worker.lku”
CONFIG
[3]JCHAN OF SP worker.in, worker.out:
CHAN OF SP hostinput, hoatoutput:
PLACE hostinput, hostoutput ON hostlink:
PAR
PROCESSOR root
multiplexcx (hostinput, hostoutput, worker.out, worker.in)
PAR i = 0 TOR 3
PROCESSOR root
worker (worker.in[i], worker.out[i])

i’igure 2.4 Software configuration 1

IMS D7305 & D4305 Professional occam 2 toolset

HOST
hostlink O
.- 0]
p[0] 0 % o0t SR R U
2
o]
T805
Pl] 1Mbyte

Figure 2.5 Hardware configuration 2

VAL M I3 1024+*1024:
NQDE root:
[3]INODE p:
ARC hostlink:
NETWORK FOUR.PROCESSOR
Do
SET root (type, memsize := “T805”, 1*M)
CONNECT root[link] [0] TO HOST WITH hostlink
DO i= 0 FOR 3
DO
SET p[i} (type, memsize := "TB05", 1*M)
CONRECT root[link] [i41) TO p{i}[link]){0]

#INCLUDE “hostic.inc”
#USE “mux.lku”
#USE "worker.lku”
CONFIG
CHAN OF SP hostinput, hostoutput:
PLACE hostinput, hostoutput ON hostlink:
[3]CHAN OF SP worker.in, worker.out:
PAR
PROCESSOR root

multiplexor (hostinput, hostoutput, worker.outl worker . in)

PAR 4 = 0 FOR 3
PROCESSOR pli]
worker (worker.in([i}, worker.out[i])

Figure 2.6 Software configuration 2

b

hostlink 0 root 2 pi2]

—
Re)
e
\=]
N

HOST

Figure 2.7 Hardware configuration 3

VAL M IS 1024*1024:

NODE root:)

{3]NCDE p:

ARC hostlink: -

RETHORK FOUR.PROCESSOR

DO ’

SET root (type, memsize := "TB805”, 1*M)
CONNECT root [link]} [0] TO HOST WITH hostlink
DO i= 0 FOR 3

Do
SET p({i]) (type, memsize := "T805", 1*M)
IF
(£ = 0)
CONNECT p[i] [link][1] TO root [link] [2]
TRUE

CORNECT p(i) [1ink])[1] TO pli-1] [link] [2)

#INCLUDE “hostio.inc”
#USE "mux.lku”
#USE "worker. lku”
CONFIG
CHAN OF SP hostinput, hoatoutput:
PLACE hostinput, hostoutput ON hostlink:
[{3]CHAN OF S? worker.in, worker.out:
PAR
PROCESSOR root
multiplexor (hostinput, hostoutput, worker.out, worker.in)
PAR L1 = 0 FCR 3
PROCESSOR p[i)
worker (worker.in[i], workezr.cut({i])

Figure 2.8 Software Configuration 3

2.2 occam 2 development system

The occam 2 compiler supports the full occam 2 language as defined in the occam 2 reference
manual. In addition to type checking the compiler will validate programs to ensure that variables and
communication channels are belng used correctly in parallel components of aprogram. This detects many
simple programming errors at compile time. The language provides support for low-level programming,
including the allocation of varables to specific memory addresses, and the inclusion of transputer

assembly code.

- IMS D7305 & D4305 Professional occafm 2 toolset 7

The compiler will generate code for the tullrange of transputer types; IMS M212, T212, T222, T225, T400,
T414, T425, T426, T800, T801, and T805. Since the diflerent processor types share a common core of
instructions it Is possible to create compiled code which will run on a range of processors.

A program may be compiled in one of several ‘error modes’ which determine the behavior of the program
when a run-time error occurs. A mode which supports the use of the post-mortem debugger may be
chosen: In this mode the network will comato a hait when a run-time error occurs. A compiler option allows
all error checking-te be ramoved from time-critical or proven parts of a program, and unchecked routines
can be called from within a checked system.

The processor target, error mode and other compiiation oplions are specified by command line switches.

Collections of procedures and functions can be compiled separately with the accam 2 compller. Sepa-
rately compiled units may be collected together into fibraries. The linker is used to combine separately
compiled units into a program to run as a self contained unit (process). The linker supports selective
loading of library units, and the linking of components written in other programming languages including
INMOS ANSI C.

The toolset supports the use of make, a program bullding tool available under UNIX and other operating
systems. The input to make is a ‘Maketile’ which describes how a program Is to be bullt from its parts,
and make rebuilds those parts of the program which have changed. In the 0CCam toolset a tool called
imake £ is provided which will ganerate a Makefile automatically from the 0CCam program text. This guar-
antees that the Makefile is consistent with the program sources.

To create a multi-transputer program, the mapping of the processes o processors is described in the
configuration.description. This description is processed by a palr of tools called the configurer and the
collector. The configurer checks the description, and passes information to the collector on how the
program code and data shouid be mapped onto the network. The collector creates the bootstrap and
routing information necessary to load the entire network, and stores this, along with the complled code,
in a program code file. The program code file can be down-loaded to one transputer in a network, and the
program will automatically boot alf the processors in the network and distribute the application code to
them. . -

A server program on the host, called the iserver, can be used to load programs on to transputer
networks. Once loaded, the programs start automatically. The server supports access to the host terminal
and file system from the transputer network. .

A compiled and configured program may be run on a network under the control of the interactive debugger
supplied with the occam 2 teolset. One processor in the network Is used to run this debugger. Break-
points may be set in the program on any processor in the network. Processes stopped at breakpoints may
be examined and continued.

INMOS has also produced an advanced development environment called INQUEST, providing windowing
based tools for debugging and profiling applications. The INQUEST debugger supports advanced opera-
tion Including breakpolnts, watchpoints, process halling and continuation, multiple windows and
command language operation. The INQUEST debugger runs on the host and therefore does not need
an extra transputer in the network.

As an altemnative to loading the program code from a host, the program code may be placed into an
EPROM. The program code for a whole network of processors may be booted and loaded from a single
processor with a ROM. The program code file may be converted to an industry standard format for
programming EPROMs, using the EPROM tools in the toolset.

i the transputer network halts because of a run-time error, or if the user interrupts the server, the symbolic
network debugger may be used, in post-mortem mode, to investigate the state of the network in terms
of the program source text.

A transputer network may consist of any combination of processor types; a network containing a number
of different types is called a mixed network. The configuration tools, EPROM support tools and debugging
tools all support mixed networks.

2.2.1 Libraries

The occam toolsets provide a wide range of 0ccam libraries, including mathematical functions, string
operations and Input/output functions. The libraries support similar functions across the full range of trans-
puter types, making it easy to pornt software between transputer types. Sources of most of the librares
are provided, for adaptation if required. :

The libraries provided are listed below.
occam complier library

This is the basic 0ccam run-time library. It includes: multiple length arithmelic functions; floating point
functions; IEEE arithmetic functions; 2D block moves; bit manipulation; cyclic redundancy checks;code
execution; arithmetic Instructions. The compiler will automatically reference these functions if they are
required.

snglmath.lib, dblmath,.lib

Single and double length mathematics functions {including trigonometric functions). These libraries use
floating point arithmetic and will produce Identical results on all processors. The occam source code Is
also provided.

tbmaths.lib

Mathematical functions optimized for the T414, T425 and T400 processors. These functions provide
slightly different results to the maths library above but within the accuracy limits of the function specifica-

tions. The occam source code is also provided.

at:;ng.lib

String manipulation procedures. The 0CCam source code Is also provided.
hostio.lib

Procedures to support access to the host terminal and file systemn through the iserver. The 0CcCam source
code is also provided.

streamio.lib
Procedures to read and write using input and output streams. The 0CCam source code Is also provided.

msdos.lib

Procedures 10 access certain DOS specitic functions thromjgh the file server. The functions are specific
to the 1BM PC. The @ccam source code is also provided. :

crc.lib _

Procedurss to calculate the cyclic redundancy check {CRC) values of strings.
convert.lib 7

Procedures to convert between strings and numeric values.

xlink.lib

Procedures implementing fink communications which can recover after a communication failure.

debug.lib

Procedures supporting the Insertion of debugging messages and assertions within a program, for use with
the Interactive debugger.

IMS D7305 & D4305 Professlonal occam 2 toolset g9

2.2.2 Mixed language programs

It ts often appropriate in the development of a large system to use a mixture of programming languages.
For example, it may be necessary to preserve an investment in existing C coede, while using 0CCam to
express thae concurréncy and communication within the system.

The occam programming modsl provides an excellent vehicle for bullding mixed language systems

whare the components bulltin each language can be clearly defined with a simple interface. The occam
toolset can be used to bind these components together and distribute them over a nelwork of transputers.

The occam toolset supports calling C functions directly from occam. it is possible to call C functions

which require static data or heap; occam procedures are provided to set up 0CCam arrays for use as
stalic or heap area for collections of C functions.

The associated INMOS ANSI C toolset allows occam procedures and (single valued) occam functions
to be catled from C just like other C functions. In addition occam programs can be mixed with C programs
at the configuration level, providing a message based Interface between C and 0Ccam code.

2.2.3 Supportfor embedded applications

The toolset has been designed to support the development of embedded applications. The fealures
include the abllity to place code and data at particular places in memory, and being able to locate where
functions and data areas reside in memory.

224 Placing code and data

The highest level 0occam processes in a system are visible to the configurer and identifiedin the configu-
ration language; these are known as configuration processes. Each processor contains one or more
configuration processes.

A configuration process consists of its code, workspace and vectorspace. The configurer allocates each
of these separate segments a place in the memory of the processor. By detault, the configurer assumes
that the memory space is contiguous from the lowest memory address for the number of bytes defined
by the memoxy attribute of the processor.

The default memory space can be changed by reserving a section of memory adjacent to the lowest
memory address for a processor. The configurer will not then aliocate any segment ot the application to
that reserved area of memory. Thus the on-chip memory of a transputer can be reserved for the applica-
tion's use.

In addition, particular segments of an application can be allocated to particular ptaces in memory, provided
only that they are placed outside the default memory space used by the contigurer. For example, the work-
space of a process can be placed In fast on—chip memory and the code of another, lass important, process
can be put into slow memory at a high address. These allocations are under the control of the user by
means of extra attributes In the processor definitions In the configuration file.

The compller, linker and collector each will optionally produce a listing of how the various parts of an
. application are mapped into the segments of memory. A tool is provided that can read all these map files
and produce a summary of the whole application, giving the locations of all the functions, workspace areas
and vectorspace areas.

225 Bootstraps

The source code of the standard bootstraps are provided. The user can then write bootstraps that are
tailored to a specific application by using the standard ones as templates.

It the application is spread over several processors in a network, then it Is possible to modify that part of
_the bootstrapping process which loads remote processors in order to perform special initializations on
those processors before thay recelve any application code.

P

.10

Note: If the user wishes to modify the Initial or primary bootstraps, the ANSI-C toolset (D4314 or D7314)
Is required for its C-compller/assembler.

2.2.6 Debugging

-

The occam toolset provides three debugging tools: an interactive symbolic debugger, a post-mortsm
symbolic debugger, and an Interactive T425 simulator.

interactive symbollc_&;bugglng

The interactive debugger provides source levei Interactive debugging of a program running on a network
of processors. The debugger supports breakpoints at the OcCam or C source code lgvel. Breakpoints
may be sst on any processor in the network. The siate of any halted process in the network can be
examined symbolically. Variables — both scalar and arrays — may be read or written symbolically. The call
stack can be examined to determine the nesting of procedure calls and paraflel process instantiation.
Channels can be Inspected. If another process is waiting on a channel it is possible to inspect the state
of the waiting process, even if itis on another processor. The debugger will automatically switch between

occam and C when debugging a mixed language program.
The interactive debugger also provides low-level examination of memory onany processor inthe network,
Post—-mortem symbolic debugging

The post-mortem debugger can be used to examine the state of a transputer network symbolically. The
debugger works with exactly the same code as will runin the final product; there is no additional code
inserted to support debugging. This allows debugging in those circumstances where the program works
under simulation or interactive debugging, but fails when run normally. After a program has halted or been
interrupted by the developer, the state of the network can be preserved so that the post-mortemn debugger
can be run. The post-mortem debugger will support direct analysis of the network, or allow the state of
the network to be saved in a dump flle for later analysis. The post-mortem debugger supports the same
symbolic and machine tevel browsing functions as the interactive debugger.

Both the Interactive debugger and the post-mortem debugger run on a transputer. When doing interactive
debugging, a processor must be allocated to the debugger, in addition to the target network. When doing
post-mortem debugging, the state of one of the processors must be saved before running the post-mernem
debugger on it.

[N

T425 simulation -

The T425 simulator is a simulation of the IMS T425 processor connected to a host running the Iserver.
It allows transputer programs to be executed on the host machine and supports machine level debugging
of transputer codz,

The machine leve! debugging support includes: breakpoints and single stepping at machine code level,
browsing memory in different forms including disassembled machine code, access to registers and

processor queues.

The transputer simulator can be used to runtransputer programs on the PC or Sun 4. Code for atransputer
network can usually be re-configured for a single processor (as shown in section 2), allowing the simulator
to be used 1o try out multi-processor programs as weil as single processor programs.

A batch mode is provided for running test suites.

2.2.7 Optimized code generation

The occam compiler implements a wide range of code optimization techniques:

Constant folding. The complier evaluates all constant expressions at compile time.

o

IMS

D7305 & D4305 Professional occam 2 toolset . 11

Workspace allocation. Frequently used variables are ptaced at small offsets In workspace, thus
reducing the slize of the instructions needed to access them, and hence increasing the speed
of execution.

Dead-code elimination. Codse that cannot be reached during the execution of the program is
removed.

Peephole optimization. Code sequences are selected that are the fastest for the operation.

Instruclloﬁ_;chedullng. Whaere possible the compiler exploits the Internal concurrency of the
transputer. In particular integer and floating point operations can be overlapped to exploit the
paralle! execution of the Integer processor and fioating point processor on the T805 series.

Constant caching. Some constants have their load time reduced by placing them in a constant
table.

CASE statements. The compiler can generate a number of different code sequences to cover the
dense ranges within the total range.

Inline code Procedures and functions can optionally be implemented as Inline code.

The compiler, linker and conflgurer provide features which allow programmers to make good use of the
transputer's on-chip RAM,

228

Assembler Inserts

" The occam toolset provides an assembler insert facility. The assembler insert facility supports

2.2.9

* Access to full Instruc}lon set of the transputer .
« Symbolic access to occam variablés ‘ ;
« Pseudo-operations to load multiple values into registers

» Ability to load results of oCCam expressions to registers

* Labels and jumps

« Directives to access particular workspace values

improvements over previous releases

' The D7305 and D4305 occam toolsets represent a considerable Improvement over the D7205 and
D4205 toolset releases. A summary is provided below.

« Compatible with the new INMQOS ANSI C toolset release (IMS D7314, D4314): Identical object
format and many tools in common.

« Improved mixing of C and 0CCam.

* Faster execution.

« Automatic support of software through-routing and multiplexing of channels across a network.
. Liéting of memory use for every processor- of a network.

» Improvements in runtime libraries.

« Placement of code, workspace and vectorspace at user-specified locations.

« Reservation of on-chip RAM for user’s application.

» Compatibility with the INMOS INQUEST advanced development environment.

12

3.1

3.2

3.3

occam Joolset Product Components

Documentation

Delivery manual

Release notes

User guide o

Toolset reference manual

Language and libraries reference manual
Performance note

Toolset handbook

occam 2 language reference manual

Tutorial introduction to occam

Software Tools

oc, ilink, ilibx: OCCam compiler, linker and librarian
imakef, ilist: Makefile generator and binary lister program
imap: memory map tool

occonf, icollect: configuration tools

isim, idebug, iskip, idump: debugging tools

iserver: INMOS host server program

ieprem, iemit: EPROM and memory interface programming tools

Software librarles

occam compiler libraries

snglmath, dblmath: mathematics functions (includes sin, cos, efc.)
tbmat hs: mathematics functions optimized to run on T414, T425 and T400
string: strlng manipulation procedures

hostio: file and terminal lfo procedures

streamio: file aﬁd terminal stream ifo procedures

msdos: access to certain MS-DOS calls

cre: CRC calculation procedures

convert: sting-number con{(erslon procedures

x1ink: extraordinary link handling procedures

IMS D7305 & D4305 Professlonal occam 2 toolset

13

3.4

debug: debugging procedures.

Source code
occam example programs

Source of makefile generator

Source of server program

occam library sources

.14, .

4 Product Variants

4.1 IMS D7305 IBM PC version

Alltools are provided in a form which will run on the host machine. The exceptions to this rute are the target
debugging tools which will only run on the transputer.

411 Operating re_qﬁlra_ments

The following configuratioﬁ is required:
« |BM PC with qaa or 486 processor and 4 Mbytes memory.
e DOS 5.0 orlater
+ 10 Mbyte of free disk space

The interactive symbolic debugger requires an additional transputer with at least 2 Mbyte external
memory. The simulater does not require this additional transputer.

Access to a transputer network can be supplied by an IMS B008 Motherboard and transputer modules
or by using the IMS B300 Ethernetitransputer gateway in conjunction with the IMS S707 soflware
package.

The other target debugging tools iskip and idump also require access to the target transputer network.

4.1.2 Distribution medla ‘
Software is distributed on two media systems (both of which are supplied in the product): -
* 1.2 Mbytes (96TPI) 5.25 inch IBM format floppy disks
« 1.44 Mbytes 3.5 inch IBM format floppy disks.

4.2 IMS D4305 Sun 4 version

All tools are provided in a form which will run on the host machine. The exceptions to this rule are the target
debugging tools which will only run on a transputer.

The IMS D4305 software is run in conjunction with a ‘floating’ licence manager. For each product
purchased, up to four users are able to use the toolset concurrently at any one customer site. The tools
can be run on any Sun 4 machine that Is part of a network connected to a single machine where the licence
manager Is installed. Further information about the licence manager is Included in the product Delivery

Manual. -

4.21 Operating requirements

For hosted cross-development and debugging the following configuration Is required:
» A Sun 4 workstation or server
» SunOS 4.1.1 or later
« 10 Mbytes of free disk space.

For loading target systems and remote debugging, one of the following s required:

» IMS BO14 or IMS B016 VMEAransputer Interface board used with the IMS S514 driver package.

4MS D7305 & D4305 Professlonal occam 2 toolset 15

« Ethernet connection to an IMS B300 and the IMS S507 software package.
The interactive symbolic debugger requires an additional transputer with at least 2 Mbyte externai
memory. The simulator does not require this additional transputer.
4.2.2 Distribution media
Sun 4 software s distiibuted on DCB00A data cartridges 60 Mbyte, QIC-24, tar format.

5 Support
INMOS transputer, board-level and toolset development products are sold and supported worldwide
through SGS-THOMSON Sales Offices, Regional Technology Centers, and authorized distributors.

A registration form Is provided with each product. Return of this registration form will ensure you are
nformed about future product updates and covered by INMOS software warranty. Software problem
repont forms are included with the software.

6 Ordering Information
Description Order number
Professional occam 2 Toolset for 386 PC singie user licence. IMS D7305

Professional occam 2 Toolset for Sun 4 four-user licence. IMS D4305

e

- -

-..u:-.r-‘g.;-v—‘ ——— .

o LD (TR (ODEOR LS

&
t:«»:.u:f_cfr.cm:mzmzmc:&cmrzaﬁat&(ﬂt&

¢S

famos |

occam?2 toolset
handbook

INMOS Limited

72 TDS 189 01

March 1991

Copyright ® INMOS Limited 1991
@ _ tunos . IMS and occam are trademarks of INMOS Ltd.
INMOS is a member of the SGS-THOMSON Microelactronics Group.

INMOS document number: 72 TDS 199 01

"y

TN

TR I I

trrrrrrane

X

L N)

* e

1

.

]

WWWQ‘QWWOW_WWWWWOWOWUUWOWO

Contents

Contents

The occam 2 Toolset

Defaull file extensions 2
Tools . 3
icollect - code collector | 4
icvemit - memory Interiace converlor 6
icvlink - object code converior 7
idebug - network debugger 8
idump - memory dumper 9
iemit - memory configurer 10.
ieprom - EPROM program convertor 11
ilibr - librarian 12
ilink - linker 13
ilist - binary lister 15
imakef - Makefile generator 16
iserver - server/loader 17

isim - T425 simulator 18
iakip - skip loader 19

oc - Qccam 2 compller 20
occonf - configurer 22
Debugger commands 24
Debugger symbolic functions 24
Debugger monilor page commands 25
Simulator commands 21
Libraries 28
User libraries 28
Inctude tiles 29
Compiler libraties 29

Bit manipulation tunctions 29

20 block moves 30

Supplementary arithmetic support functions 30

Hostio library N
Sireamio library 37
72 TDS 199 01 March 1991

ii Contents
Single lenglth maths librery 40
Double lengih maths library 41
T400/T414/T425 maths library 41
Type conversion library 44
Block CRC library 45
Link handling library 45
Debugging support library 46
Mixed languages supporl library 46
DOS specific hostiv library ’ . 47
Compiler library user tuncilons 48

Dynamic code loading support procedures 50
Transputer error flag manipulatlon 51
Reschedutlng priorily process queue 51
72 TDS 199 01 March 1991

0000’000000000000900%%

"9*

b @& & e B e e e e

TR TR VRN VR PR VRV VRV R TR R T

Tool Description

icollect | The coda collector which creates bootable files from finked units
or configuration binary files.

icvemit | Memory interface fie converior. Converls files produced by
iemi (a previous version of iemit) 10 a lormat suitable for
usa with ieprom and iemit.

ievlink | The TCOFF file convernor whichlconvens LFF object liles to
TCOFF format. - - -

idebug The network debugger which provides post-monem and intarac-
tive debugging of transputer programs.

idump The memory dumper for saving the program image on the root
transpulér.

iemit The transputer memory configurer for evaluating and defining
memory cenfigurations. {©

ieprom The EPROM program formalter tocl which generates transpuler
bootabla cods for input to ROM programmaers.

ilibr “The 1oolset librarian which builds libraries of compied code.

ilink Tra toolset linker which links separately compiled code into a
singla fila.

ilist The binary lister which displays information from tgolset object
files. :

imakef The Makefile generator which generates Makefites for input to
MAKE programs.

iserver | The host fila server which loads programs onto lransputer hard-
warg and provides host communicatian.

isim The T425 simulator. Simulates pragram execution an an IMS
T425 transputer. - -

iskip The skip loader toal which loads over the root transputer.

oc The occam 2 compiler. Generates object code for specific
transputer targels.

occent The configurer which creates configuration binary files from con-
figuration descriptions.

72 TDS 199 01

March 1991

i

Default file extension's

Extenslon | Description

.btl Bootable coda file. Craeated by icollect.

.btr Executable code minus boolstrap information used forinput
to ieprom. Created by icollect.

.cfb Configuration binary file. Crealed by occonf or
icollect.

.clu Configuration object fila. Created by occonf.

.dmp Cora-dump file created by.idump or network-dump file cre-
ated by idebug or isim

.inec Inctuds file. lnput to oc and occonk.

.1lku Linked unit. Created by 11ink.

.1bb Library build file. Command file for ilibz,

.1ib Library fite. Crealed by ilibz.

.liu Library usage file. Created by imakaf,

.1lnk Linker indirect file. Command file for i1ink.

.occ occam 2 source files.

.pgm Configuration description source file.

.rsc Dynamically loadabla code file. Created by icollaect.

.tco Compiled coda fila. Created by oc.

72 TDS 199 01 ‘ March 1991

* e PP RTRARRLAARARAR AR SR RN

T R B T T T

N 7 VR VR TR TR TR TRV R T T

Tools

72 TDS 199 01

i

March 1991

4 Tools Tools 5

Options: T Creates bootable code for a single transputer.

icollect - code collector

Loads transputer-hosted tool tar muitiple execu-

lion.
Generates bootable code files for single and multiple transputer programs from .
hnked units and configuration binary files respactively. Also used to create non- X0 :Tgsds ransputer-hosted tool for singia execu
bootabla single transps:tar pragrams for dynamic loading or booting from ROM. -
Y Disables intaractive debugging with idebug for

single transputer programs.

LT T I T T
&

Syntax: icollect filename {options} 1

RS romsize Specifies size of ROM on tha root proces-
sof.

8 stacksize Spacilies extra runtime stack size for sin-
" | gle transpuler programs.

OQQQOOQ,OOQQOOOGOO’O’OG

where; filename is a linked unit (. 1ku) or conliguration binary file (. c£b). 9
Note: If the input fila is a finked unit (single transputer mode) then the 'T* option 2
must be specified.
9 .
Optlons: B filgname Spacities extarnal bootstrap loader pro-
gram. a)
C filenamsg Specifies debug data file.
D Disables the debug data file for singte 2
transputer programs.
E - Changas setung of Halt On Error flag. 9
I Displays progress information. 9
K Creates non-bootsirapped codae.
L Loads the tool and lerminates. a)
M memorysize | Specities memory s12¢ on root processor.
0 filaname Specilies output tde. 9
P llenamas Specifies a memory map output file. 9
RA Creates RAM-loadable code.
RO Creates ROM-loadable code. 9
3
-2
9
9
-)

72 TDS 199 1 March 1991 72 TDS 199 O1 March 1991

¢

.
' 2

6 Tools

icvemit — memory interface
convertor

Converts memory conliguration files produced by iemi (a previous version of
iemit) 10 a file format suitable for use with 1emit and ieprom.

Syntax: icvemit fifename {options}

whera: filename is the input file to be convened.

Options: 1 Displays progress information.

0 filename Specifies output file.

72705199 01 March 1991

€3
¢ I
¢ 3
e >
€ 3
€9
€ >
€ 9
e 9
€ >
PP
€ 9
€ D
€ 9
€ 9
€ D
€ 2
€-9
€-d
€-9
€ 3
€ 3

Tools

icvlink- object code convertor

Convenis object code into TCOFF format.

Syntax:

ievlink filename {options}

where: filgnamae is the object file to be convened.

Options:

72TDS 193 0

D Creates muitiple modules from TA and TC
modules. For libraries only.

I Displays progress information.

L Loads the tool and terminates.

o filenama | Specities output file,

P Craates T8 modules from TA and TC mod-
ules.

XM Loads transpular-hosted tool for multiple ex-
ecution,

X0 Loads transpular-hosted tool for single exe-

cutign,

March 1931

¥
i

8 Tools Tools 9

idebug- network debugger idump - memory dumper

Writes the roct {ransputer's memory to a lile. Used in debugging programs that
use the root transputer.

Provides post-mortem debugging and breakpoint debugging.

Syntax: idebug filsname {oplions
Y ° {.p) Syntax: idump figname memsize {offset length}}

L7 T T T

whara: filgname is a booiable file,
where: fienama is the bootable program file

&

memsize is the amount o!f memaory measurad In bytes 1o be dumpad to
the file

Optlons: B hnknumber | Breakpoint debug a network,

[

M linknumber | Posimortem debug a previous breakpoint

session, offset is a byte offset from the start of memory

)

T hnknumber | Postmoriem debug a program not using the
rool processor,

tength is the number of bytes of memory staring at offset 1o be wntlan
to the lle in addiion lo memsize.

(7

R fidename Postmartem debug a program using the
root transpuler,

OQOOOOOOOOOOOQOOOOOOO
"/

N filename Postmoriem debug from a network dump)
tile.
C upe Specily processar type instead of class for 5]
non-conligured programs.
D Dummy debugging session. - 5)
A Assed subsystem analyse on the network. >
[)
s Ignore subsystam error stalus when break- _
point debugging. 5
I Display debugger version number.
2
D
+ &)
)
i
-)
72 TDS 199 01 s " March 1991 €9 72 TDS 195 O1. March 1991

| P,

Tools

idebug- network debugger

Provides post-mortem debugging and breakpoint debugging.

Syntax:

idebug

where: filenama is a bootable fila.

Options:

72 TDS 199 01

filename {oplions}

linknumber

Breakpolnt dabug a network,

M linknumber

Postmontem debug a previous breakpoint
session.

linknumbar

Postmorntem debug a program nol using the
root processor.

tiename Postmortem debug a program using the
root fransputer,

llename Postmortem debug from a netwark dump
fila.

lype Specily processor typa instead of class for

non-configured programs.

Dummy debugging session.

Assert subsystam analyse on the netwaork.

Ignore subsystem error status when break-
point debugging.

Display debugger version number.

March 1991

&

O U Y LY LW

QOOOOOOQOOQ’O’O
&

Tools g

idump - memory dumper

Writes the roof fransputer's memory to a file. Used in debugging pro'grams that

- usé the root transputer.

Syntax: idump filename memsize {offset length}
|

whare: filanama is the bootable program file :

memsize is the amount of mgmory measured in bytes to be dumped 1o
the file : -

olfsat is a byte offsel from tha start ol memory

length is the number of bytes of mamory starting al offset 1o be written
1o the fila in addition 1o memsize.)

72 TDS 199 01 March 1991

12 Tools

ilibxr - librarian
Builds librasies of cods from separate files.
Syntax: ilibr {filenames} .{options}

whare: flenames is a Yist of compiled modules.

Options: | fiename | Specifies library indirect tile.

I Displays progress information.

L Loads the tool and terminates.

o flenams | Speciiies output file.

b4 Loads transputer-hosted tool for multiple ex-
ecution.

X0 Loads transpuler-hosted tool for single exa-
cution,

72 TDS 199 1 March 1991

€3
€ 3
€3
€-d
€2
€9
€ 9
€ 9
€
€ >
€ >
€2
€2
€ 2
€9
€9

Tools 13

ilink-linker

Links object filas together, resolving externai relerences, to create a single hnked
unit.

Syntax: ilink ({filenames} {options}
|

whara: filenames is a list of compiled modules or libraries.

Options: TA Link for class TA
; {T400/T41 4/T425/TB0OO/TBO1/TBOS).

TB Link lor class TB (T400/T414/7425).
T212 | Link for T212.

‘Ir2] Link for T212/T222/M212.

T222 | Link 1or T222.

7225 | Link for 7225.

T3 Link lor T225.

T400 | Link for T400.

1414 | Link tor T414. Defauit. -
T4 Link for T414.

T425 | Link lor T425.

TS Link for T425/T400.

TBOO | Link for TBOQ,

T8 Link tor T800.

1801 | Link for TBO1.

TROS | Link for T805.

T9 Link for T8O1/T80S.

H Genarates HALT mode output. Delaudl.
s Gansrates STOP mode output.
X Generales UNIVERSAL mode output.
72 TDS 199 01 March 1991

Tools 15

L
14 Tools
Options: | Specities TCOFF format. Default. 6 3 1 1 1st — b|nary lister
LB Specities LFF formal. For use with the ’
iboot andiconflools, supported by the)
D705, D605 and D505 ioolsets. ¢ 3 Decodes and displays information from object files and bootabla files.
Lc Specifies LFF lormat. As above, but
only for use with the iconf tool. ¢ 9) Syntax: ilist filename {options)
EX Allows extraction of modules without) { P
linking them, ¢)] [
£ filename Specifies linker indirect file, 6 whaera: filenamae is an object or bootable file, 1
I ' Disptays prograss inlormation. 9
KB memorysize | Specifies maximum internal cada butler e) Options: A Displays all avallable symbolic information,
size.
| in h imal,
L Loads the tool and terminates. 6) ¢ Disptays cods in hexadacimal
ME entryname | Specifies main antry point. E Displays all exporied names.
MO filename Generales module information file. & 9 H Fisplays speafied file(s) in hexadecimal
ormat.
O Henams Specifies outpult fila.
o Allows unresolved references. &) I Displays full progress information.
xw Loads wransputer-hosted ool tor multiple & 9 L Loads the tool and terminates.
execution. M Displays mocule data.
X0 Loads transpuler-hosted tool for singla - .
execution. P g ¢) H Disptays library index data.
Y Disables interactive debugging for OC- O filename | Specilies output ile.
cam code. € 9 P Displays procedural interiaces.
‘ : 5) R reference | Displays hbrary module(s) with the speci-
. tied refarence.
LD T Displays full listing.
‘ - D) W Identifies fle type. Defaull.
X Displays all external relsrences.
¢) XM Loads transputer-hosted too! for mulliple
execution.
‘*" ') X0 Loads transputer-hasted ool for single ex-
- ecution.
¢e 9
¢-)
. 72 TDS 199 01 . March 1991

72TDS 19901 March 1991

— mg——

16

Tools

imake £ - Makefile generator

Creates Maksfiles for toolsat compilations.

Syntax:

imakef {filenames} {oplions}

where: filanames is a list of target cbject or bootable files.

Options:

72 TDS 193 01

o For ¢ modules anly. Specifies input from a
linker indirect fila.

D Disables debugging dala.
Displays full progress information.

L Loads thae tool and terminates.

RI Do not include dependencies on ISEARCH.

o filename | Specilies output file.

R Incorporates a delete rls.

XM Loads transputer-hosted lool lor multiple ex-
ecution.

X0 Loads transputer-hosted toal for single exe-
cution,)

Y Disables interactive (breakpoint) debugging in

tha target file.

March 1891

2

Tools

17

iserver- server/loader

Loads programs onto transputars and transputer boards and serves host com-

munications,

Syntax:

iserver boorab!e!ihla {options }

!

whare: bootablefile is a bootable file. !

Options:

©72TDS 199 01 °

SA Analyses roo! transputer and peeks 8K aof
memory.
sB filename | Loads specilied program.

sSC filename

Copies specilied file 10 root transpuler hink

SE Monitars transputer error {1ag.

SI . Displays progress information.,

SL pame Specities device name or ink acdress.

SP N Specilies KByles of memory peeked on Anal-
yse.

SR Rosats rool ransputer and subsysiem on the
link,

58 Serves the link, that is, starts up the host com-

municalions.

Oplion SB is equivatent 10 invoking the combination:
SR S5 SI SC fdgname.

- March 1991

Tools 19

18 Tools . ¥
1sim-— T425 simulator 6 iskip- skip loader
L)
Simulates the execution of a program on the IMS T425. & 9 Allows programs 10 be loaded onto transputer nelworks beyond the root trans-
puter.
Syntax: . isim filename programparameters {options} € 9 . o N .
Syntax: iskip linknumber {options}
@) |
where: filenamae is a bootable file.
& 9) where: finknumber is the root transputer link to which the larget netwoik is
Options: [[Batch mode operation. connected.
BQ | Bateh Quiet mode. No progress information. @ 9
av | Bateh Verity mode Options: E Monitors subsystem error status; terminates when
. & 9 it becomes sel.
ispl)| i ion.
Displays full progress intarmation R Reset subsysiem but not the root transputer.
L | Loads the ool and terminales. €) - . . .
Displays delailed progress information.
No mora options for the simuiator. & 9
xM | Loads transputer-hosted tool for mulliple execution.
X0 | Loads transputer-hosted tool for single execution, LD
e)
@ 9
e)
@)
€& 9
e
e-9
e-9)
€@-)
7270519901 March 1991 € 2 72 TDS 199 01 March 1991
L R
))

i ——— T = wr—

20

Tools

oc - occam 2 compiler

Compiles 0ccam 2 source code.

Syntax: oc

filename {options}

whera: filename is an 0ccam source filg.

Options: jTa

Compite for class TA
{TA00/T414/T425/TBOO/TEN /T805).

TB

Compile for class TB {T400/T414/T425).

T212

Compile for T212.

T2

Compile lor T212/T222/M212.

T222

Compile for 7222,

T225S

Compile for T225.

T3

Compiie tor T225.

T400

Compile for T400.

T414

Compile for T414, Defaull.

T4

Compile tor T414.

T425

Compile for T425.

TS

Compile for T425/T400.

TAOO

Compile tor TB0O.

T8

Compila for T800.

T801

Compite lor TBO1,

TEOS

Compile lor T8OS.

Compile tor TBO1/T805.

Generates HALT mode output. Default,

Generates STOP mode outpul.

Generates UNIVERSAL mode output.

Qix|lnl=x

Enables use of ASM or GUY code for a re-
stricted set of transpuler instructions.

SR e m————— -

>4

Enables use ol ASM or GUY coda for tha fuli

sét of transputar instructions.

72 TDS 199 Q1

March 1991

mmmmmmmmmmmmmmm‘mmmmmmm

b

)

Tools

21

Options: [k

Disables insertion of run-time range checks.

Disables insenion of run-uime error checks.

HA

Disables inserion of run-time checks for
ASSERTS.

Loads the too! and tarminatas.

El“

Loads transputar-hosted tool for multiple ex-
eculion.

Loads wransputer-hosted 1ool for single exe-
cution.

Disables ahas and usage cheacking.

Displays messages in bral.

Only performs check.

Generates minimal debugging information.

Disatles use of the compiler hbranes

HIMID|O|®]| >

Dispiays progress inlormation.

N

Disablas usage checking

O cutpullilg

Spacities output file.

R flename

Radirects error messages 10 a lla.

v

Disables the generation of code with a sepa-
ratg veclor space requirement.

Y

Disablas interactiva debugging with idebug.

NWP

Disables warning messages of unused pa-
ramaters.

NWU

Disables warning messages of unused vari-
ablas or routines.

WD

Provides a warning when a name is de-
scoped.

RO

Provides a warning when a run-lime alias
check is generaled.

72 TGS 199 01

March 1991

22

Tools

occonf ~ configurer

Generates configuration binary files frrom configuration descriptions.

Syntax:

occonf filename {options}

whare: filenama is a configuration description (. pgm) source file.

Options:

Displays messages in briel.

Onty performs check.

B
c
I

Displays progress infermation.

L

Loads the tool and terminates.

O outputfile

Specilies output fila.

R filename

Redirects arror messages to a file.

v

Disables the generation ol code with a
separat@ vectar space requirement.

Disables interaciive debugging with
idebug. .

g

Creates RAM-loadable coda.

Creates ROM-loadable code.

Geanerates HALT mode output. Datault,

Generates STOP mode output.

Generales UNIVERSAL mode outpul.

miwlini:

Disables Insanion ol run-time range
chacks.

Disables insertion of run-time error
checks. ;

NA

Disables insertion of run-tima cheacks for
ASSERTS.

72 TDS 193 01

March 1991

-~ ®m ® " A A S TP LD DD A2 A D AR

23

Tools
Options: | Enables usa of ASM or GUY code for a re-

stricted set of transputer instructions.

W Enables use of ASM or GUY code for the luil
set of transputer instructions.

RE Enables memory lay-out re-ordering.

NWP Disables warning messages of unused pa-
ramaters. |

NWU Disables warming messages of unused var-
ables or routines.

WD Provides a warning when a name is de-
scoped.

WO Provides a warning when a run-lima ahas 1S
check is generated.

XM Loads transputer-hosted tool for multiple ex-
ecution. ;

X0 Loads transputer-hosted tool lor single exe-

72 TDS 199 01

cution.

March 1591

Debugger commands

Debugger symbolic functions

-
c
5
2k
o
2

Descriplion

]

Z
N
T
m
\e]
—

Inspect symbol.

HANNE Locate to process wailing on channal.

Locale to lasl error ar location.

RETRAC Retrace last operation.

Locate back lo.ast location tina,

Display extra informanon.

EARCH Search for string.

Change 1o Monitor page.

Locate 1o procedure or function call.

= HlmlE =l
m O m o]
Y z Ot o K

5

O

) ™) —

Misplay tunction keys.

[=]
m
-4
>
Q
[l
o
1
[
L

Display acdress of source line.

Display different fila.

Display included fite.

™} |[m
Z
=
m|
o

ml || 2
I -
m

XH _FIL Display enclosing tila.

GOTO LINE Go 10 specific line in file.

Go to first kne in fila.

Go to last kne in file.

Display C variables in Hex.

t | Sevclear breakpoint.

{A0DIFY) § Change vanable in memory.

t Aesuin: pragram from breakpoint.
1 Resunte program from current lina.
t Return to Monitor page.

(MODIFY] t Change variable in memaory.

Quit.

t Breakpoint mode only

72 TDS 193 01

March 1991

GQQ‘QOQQOGOOQGOOQQQ‘OO‘DQGO

Debugger commands

25

Debugger Monitor page commands

Key Meaning Description

A ASCI View memory in ASCIL.

Bt Breakpoints Enter breakpoint debugging.

c Compare Compara actual code with expected code.
D Disassembie Disptay transputer instruchions.

E Next Error Co ic naxt processor wilh error Ylag sel.

F Select tile Select source hile for display.

G Goto process Enler source level debugging for a process.
H Hex View mamory in hexadecimal.

1 inspect Vigw memory in any type.

Ji Jump Starl of resume program.

K | Processor names | Display processor namaes,

L Links Display processes wailing on inks or Event pin,
M Memory map Display transputer's memory map

N Network dump | Dump neiwork memaory.

o Specify process | Resume symbolic debugging.

P Processor Change processor.

Q Quit Quit debugger.

R Run queueas Display active process Quaues.

T Timer queves | Display tmer queues.

Ut Update Updala Monitor page with new register values.
v Process names | Display process names.

Wi Write Writa to memaory.

X Exit Change to symbofic mode.

Yt Pastmonem Change 10 post-mortem debugging.

? Help Display help information.

1 Breakpoint mode only

72 TDS 199 01

March 1991

2

(>3}

Debugger commands

Debugger Monllor page commands (contd)

Function Descriplion
Reado last operation.
AELOCATE] | Locate to last location line.
INE UP Next lina.
INE DOWN] | Previous kne.

AGE U

| Previous page.

Nexi page.

Display help information.

B ii = {[@] (i) |[F
m >
| |1&y
o ||m
| Q
g]
Z

EFRESH

Ra-draw the screen,

TGP Find last instruction exscuted.
1 Scrolt display.

N Scroll display.

=] Scroll processor left,

Scrolt processor right.

72TDS 199 0

March 1991

-

'QOOQOQOOOOOOQOQOOQO'l*OO

. .
) Simulator commands
- 6)
D) Key Meaning | Description
B A ASCII View memory in ASCIL
8 Breakpoints | Breakpoint menu.
') D Disassemble | Oisplay transputar instruclions.
) . G Go Run/resumae program.
H Hex View memory in hexadecimal.
) [Inspect Display memory in 0CCam type.
2D J Jump Resume (Jump into) program.
L Links Display processes waiting on links ar Event pin.
') M Memory map | Display transputer mémory map.
,)' N Network dump | Create core dump file.
P Program boot | Simulate a program load. -
D Q Quit Quit simulator.
5) R Run queues | Display active process queues.
s Single step | Single step ona iransputer instruction.
D |
T Timar queues | Display Wmer queues.
-) u Assign register | Assign value to register.
? Help Display help information.
. i) -
71 Query Display registers and queue pointers.
- 5) | Where Display next Iptr. ’
5Y (N Scroll display.
| Scroli display.
9D Display help information.
- 8) Radraw the screen.
Quit simulalor.
') ¢ Balch mode commands.
2 72 TDS 199 01 March 1991
D

Faid s

Libraries

29

Libraries

User libraries

Library

Descripiion

hestlo.lib

Host file server library.

streamio.lib

Stream Vo library.

snglmath.lib

Single length maths library.

dbhlmath.lib

Double tength maths fibrary.

tbhmaths.lib

T400/T414/T425 optimised maths func-

tions.

atring.lib

String handling tbrary.

convert.lib

Type conversion library.

xlink.lib Exiraordinary link handiing library.
cre.lib Block CRC library.

debug.lib Debugging suppon library.
callc.lib Mixed languages support library.

msdos.lib

DOS specific hostio library.

72 TDS 199 01

~

March 1991

include files

Flle

Contents .

hestio.inc

Host file server constanis.

streamio.inc

Siream ifo constants, |

mathvals.inc

Maths and 1r|gonometri|c constants.

linkaddr.inc

Transputer link addressas.

ticks.inc

Bates of the lwo transputer clocks.

mados.inc

DOS specific hostio library constants.

Compiler libraries

File Processor type

occam2.lib T212/T222/T225/M212

occama.lib T400/T414/T425/TA/TB

occamB.lib | TBOO/TEO1/TE05 |
occamutl.lib | Al

virtual.lib (Al

The compiler libraries support
tines called by some of the o

interactive debugging.

Bit manlpulatlon functions

all error modes. occamutl.lib conlains rou-
ther compiler libraries. virtual.lib suppons

Result | Functlon

Parameter Speciliers

INT BITCOUNT

VAL INT Word, CountlIn

INT BITREVNBITS | VAL INT x, N
INT BITREVWORD | VAL INT x

72 TDS 199 01

March 1991

30 Librarles
20 block moves
Procedure | Parameler Speciliers
CLIPZD VAL [} []BYTE Source,
VAL INT sx, 3y, [][]1BYTE Dest,
VAL INT dx, dy, width, length
DRAW2D VAL []1{]BYTE Source,
VAL INT sx, sy, [][]BYTE Dest,
VAL INT dx, dy, width, length
MOVEZD VAL [][]BYTE Scurcae,
VAL INT sx, sy, []J[]1BYTE Dest,
VAL INT dx, dy, width, length
- CRC functlons
Resuit | Functlon | Parameter Specltiers
INT CRCWORD | VAL INT data, CRCIn,
generator
INT CRCBYTE | VAL INT data, CRCIn,
generator
Supplementary arithmetic support tunctions
Result{s} | Function Parameter speciflers
INT FRACMUL | VAL INT x, y
INT, UNPACKSN | VAL INT x
INT,
INT
INT ROUNHDSN VAL INT Yexp,
Yguard
72TDS 198 01 March 1991

K

:QQQQQQOOOOOQQ"DQQO@OOG"l*!t}m

Librarles

31

Hostio library

$USE "hostio.lib”

Procedure

Parameler Specifiers

so.ask

so.buffer

so.closa

so.commandline

so.core

so.date.to.ascii

so.ecof

so.exit

so.ferror

so0.flush

CHAN OF SP fs, ts,

VAL (]BYTE prompt, replies,

VAL BOOL display.possible.replies,
VAL BOOL echo.replly,

INT reply.number

CHAN OF Sp fs, ts,
from.user, to.user,
CHAN OF BOOL stopper

CHAN OF SP fs, t=,
VAL INT32 streamid,
BYTE result

CHAN OF SP fs, ts, VAL BYTE all,
INT length, []BYTE string,
BYTE result

CHAN OF SP fsa, ts,
VAL INT32 offset, INT bytes.read,
[1BYTE data, BYTE result

VAL [so.date.len)IlT date,

VAL BOOL long.years,

VAL, BOOL days.first,
[so.time.string.len)BYTE string

CHAN OF SP fs, ts,
VAL INT32 streamid, BYTE result

CHAN OF SpP fs, ts,
VAL IRT32 status

CHAN OF Sp fs5, ts,
VAL INT32 streamid,
INT32 error.no, INT length,
[]BYTE message, BYTE result

CHAN QOF SP fas, ta,
VAL INT32 streamid,
BYTE result

72 TDS 199 01

March 1991

32

Librarles

Procedure

parameter Specliiers

so.fwrite.char
so.fwrite.hex.int
so.fwrite.hex.int3z
so. fwrite. hex.int64
so.fwrize.in?
so.fwrite. int32

so. fwrite.int64
so.fwrite.nl

so.fwrite.real32

so.fwrite.realbd

so.fwrite.string

so.fwrite.string.nl

CHAN OF SP fs, ts,
VAL INT32 streamid,
VAL BYTE char, BYTE result

CHAN OF SP fa, ts,
VAL INT32 streamid,
VAL INT n, width, BYTE rasult

CHAN OF SP fs, ts,
VAL INT32 streamid, n,
VAL INT width, BYTE result

CHAN OF SP fs, ts,
VAL INT32 streamid, VAL INT64 n,
VAL INT width, BYTE rasult

CHAN OF SP fas, ts,
VAL INT32 streamid,
VAL INT n, field, BYTE result

CHAN OF SP fs, ts3,
VAL INT32 streamid, VAL INT32 n,
vAL INT field, BYTE rasult

CHAN OF SP f£s, ta,
VAL INT32 streamid, VAL INT64 n,
VAL INT field, BYTE result

CHAN OF SP fs, ts,
VAL INT32 streamid, BYTE result

CHAN OF SP fa, ts,

VAL INT32? streamid,

VAL REAL32 r, VAL INT Ip, Dp,
BYTE result

CHAN OF SP fs, ts,

VAL INT32 streamid,

VAL REAL64 r, VAL INT Ip, Dp,
BYTE result

CHAN COF SP fs, ts,
VAL INT32 streamid,
VAL [)BYTE string, BYTE rasult

CHAN OF 5P fs, ts,
VAL INT32 streamid, .
VAL [])BYTE string, BYTE result

72 TDS 195 01

March 1991

Libraries

a3

Procedure

Parameter Speciliers

so.getenv

ao.getkey

so.gats

so.multiplexor

so.open

so.open.temp

so.ovarlapped.buffer

so.ovarlapped.multiplexox

so.overlapped.pri.multiplexox

CHAN OF SP £a, ta,

VAL [)BYTE nama,

INT length, []BYTE value,
BYTE result

CHAN OF SP fs, ts,
BYTE kay, result

CHAN OF SP fa, ts,

VAL INT32 streamid,

INT length,

[{}BYTE data, BYTE result

CHAN OF SP fs, ta,
[JCHAN OF SP
from.user, to.user,
CHAN OF BOOL stopper

CHAN OF SP fs, ts,
vAL {]BYTE name,

VAL BYTE type, moda,
INT32 streamid,

BYTE result

CHAN OF SP fs, t»,

VAL BYTE type,
[so.temp.filenama.length]
BYTE filename,

INT32 streamid,

BYTE result

CHAN OF SP fs3, ts,
from.,user, to.user,
CHAN OF BOQL atopper

CHAN OF SP fs, ts,
[ICHAN OF SP
from.user, to.user,
CHAN OF BOOL atopper,
[JINT queue

CHAN OF SP fs, ts,
[}CHAN OF SP
from.user, to.user,
CHAN OF BOOL stopper,
[1INT queuve

72 TDS 199 01

March 1991

Librarles J .) Librarles .35

34
@)
Procedure Parameter Specifiers & 9 Procedure Parameter Specifiers
. »
30.parse.command.line |CHRN OF SP fs, ts, . so.read.echo.inté4 |CHAN OF SP fs, ts, INT6&4 n,
VAL [] []BYTE option.strings, BOOL error
VAL []INT & =)
option.paramete:s.required, so.read.aecho.line CHAN OF SP fa, ts, INT len,
[1B00L option.exists, ¢ ;’ - | [1BYTE line, BYTE result
[1[2)INT option.parameters,
INT error.len, []BYTE line t) so.read.echo.real32 gggg Sf:' :i f?, ts, REAL3Z n,
] - r
HAN OF SP fs, tas
so.pollkey C ' ' so.read.echo.real64d | CHAN OF SP fs, ts, REAL64 n,
BYTE key, result G .) BOOL error
so.popen.read Sy[?:!:z :;:‘Le:\:;na e 9 so.read.line CHAN OF SP fs, ts, INT len,
r » I
VAL [)BYTE {]BYTE line, BYTE result
path.variable.name, 80 .ramove . | CHAN OF sP fs, tas, . '
VAL BYTE open.type, é ') VAL []BYTE name, BYTE result
INT full.len
(1BYTE full.:'lame, e 5) so.rename CHAN OF SP fs, ts3,
INT32 streamid, BYTE result ;ﬁﬁ[:g:zftoldﬂame. newname,
so.pri.multiplexor CHAN OF SP fs, ts, e s0. 36k CHAN OF SP fs, ts
llpll F - ! r
;]rim usZr Sio user é) VAL INT32 streamid,
. i . ’ » + .
CHAN OF BOOQL stcopper :ﬁEISZiilszset, arigin,
sc.puts CHAN OF SP fs, ts, €) so.system CHAN OF SP fs, ts,
VAL INT32 streamid, VAL []BYTE command
VAL []BYTE data, BYTE result @ 9 INT32 status, BYTE result
so.read CHAN OF SP fs, t3, so.tell CHAN OF SP fs, ts
VAL INT32 streamid, e) VAL INT32 streamid,
INT length, []BYTE data INT32 position, BYTE result
so.read.echo.any.int CHAN OF SP fs, ts, INT n, ()) s0 . test.exists CHAN OF SP f£s, ts
BOO_L errocr VAL []BYTE filename, BOOL exists
so.read.echo.hex.int CHAN OF SP fs, ts, INT n, D) so.time CHAN OF SP fs, ts
. r 1]
i BOOL error INT32 localtime, UTCtime
so read.echo.hex.int32 | CHAN OF SP fs, ts, INT32 n, e) so.time.to.ascii VAL INT3I2 time
BOOL error .) VAL BOOL long.years,
so.read.echo.hex.int64 | CHAN OF SP £s, ts, INTG64 n, [VAL BOOL days.first
BOQOL error ‘ [so.time,.string.len]BYTE atring
»
so.read.acho.int CHAN OF SP fs, ts, INT a, e) s0,tima.to.date VAL INT32 input.timae,
BOOL error . [so.date.len]) INT date
D)
so.read.echo.int32 CHAN OF SP fs, ts, INT32 n,
BOOL error i
D)
72 TDS 199 01 . March 1991 72 TDS 199 01 March 1991
LD | .

———— gn e P g o mr s

36

Libraries

Procedura

Parameter Specifiers

. so.today.ascii

so.today.date

s0.version

CHAN OF SP fa, ta,
VAL BOOL long.years,
|so.time.string.len]B

CHAN OF SP fs, ts,
[so.date.len] INT date

CHAN OF SP fa,

days.first,
YTE string

Libraries

Streamio library

#USE "streamio.lib”

Procedure

Parameler Specltiers

ks .keystream.sink

ks .keystream.to.scrstream

CHAN OF KS keys

CHAN OF KS keyboard,
CHAN OF SS scrn

ey v p—

BYTE version, host, os, board ks.read.char c OF |KS source,
so.write CHAN OF SP fa, ta, i) INT char
VAL INT32 streamid, K3 .read.int - oF KS source,
VAL 11ByaE dara INT number, char
INT length)
i h CHAN OF VAL BYTE ch ks.read.int64 CHAN OF KS source,
so.write.char OF SP fs, L=, YTE char i) | O er IR char

so.write.hex.int CHAN OF SP fs, ts,

X . .13 F K
VAL INT n, width ks .read.line CHAN O S source,

) INT len, [)}BYTE line,

so.write.hex.int32 | CHAN OF SP fs, ts, INT char

VAL INT32 n, VAL INT width

3 . ks.read.reall2 CHAN OF KS source,

so.write.hex.int64 [CHAN OF SP fs, ts, REAL3IZ number, INT char

VAL INT64 n, VAL INT width

ks.read.real6d CHAN OF KS aource,

so.write.int CHAN OQF SP fs3, ts3, REAL64 number, INT char

VAL INT n, field
CHAN OF SP fs, t=s,

) CHAN OF KS keys.out,
D) | VAL []JBYTE filenama,
BYTE result

sc.keystream.from.filae

so.write.int32 CHAN OF SP f=s, ts,

VAL INT32 n, VAL INT field

so.write.inté64 CHAN OF SpP £s8, ts=s,

VAL INT64 n, VAL INT field
CHAN OF SP fs, ts

CHAN OF SP fa, ts,
CHAN OF KS keys.out,
) : CHAN OF BOOL stopper,
VAL INT ticka.per.poll

so.keystream. from.kbd
so.write.nl

so.write.real32 CHAN OF Sp fs, ts,

VAL REAL32 r, VAL INT Ip, Dp

CHAN OF SP fs, ts,
VAL REAL64 r, VAL INT Ip, Dp

CHAN OF SP fas, ta,
CHBAN OF KS keaeys.out,
i’ BYTE rasult .

i’ ao.keystream. from.atdin
so.write.realb4d -

so:u:ite.strinq CHAN OF SP fs, ts,

. CHAN OF SP f£s, ts,
VAL []BYTE string

i’ ao.scratream.to ANSI
CHAN QOF SS scrn

so.write.string.nl | CHAN OF SP fs, ts,
VAL []BYTE string

72 TDS 199 01 March 1991 o) 72 TDS 199 01 March 1991

N T T e TP LTEPETETTDTED”SEDT DD DD
[

a8

Librarles

Procedure

Parameter Speciflers

so.scratream.to.file

so.scrstream.to.stdout
so.scrstream.to,TVI020

a3 . beep
ss.clear.eol
33 .clear.aos
ss.del.line
s3.delete.chx
as.delete.chl
33 .down

a3 . goto.xy

33.ins.line
ss.insert,char
as.left

ss.right
ss.scratream.copy

as.scrstream, fan.out

as.acrstream.from.array

as _scrstream.multiplexor

sas.scratream.sink

CHAN OF SP fs, ts,
CHAN OF SS scrn,

VAL []BYTE filename,
BYTE result

CHAN OF SP fs, ts,-
CHAN CF SS ascrn, BYTE result

CHAN OF SP fs3, ts,
CHAN OF SS acrn

CHAN OF S5 acrn
CHAN OF S5 acrn
CHAN OF S§5 scrn
CHAN OF S5 scrn
CHAN OF S5 scrn
CHAN OF SS scrn
CHAN OF S8 scrn

CHAN OF S5 scrn,
VAL INT x, ¥
CHAN OF SS scrn
CHAN OF SS scrn, VAL BYTE ch
CHAN OF S5 scrn
CHAN OF SS scrn
CHAN OF SS scrn.in, scrn.out

CHAN OF S5 scrn,
screen.outl,
screen.out2

CHAN OF S§S scrn,
VAL [])BYTE buffar

[JCHAN OF SS screen.in,
CHAN OF SS screan.out,
CHAN OF INT stoppear

CHAN OF SS scrn

72 TDS 199 01

March 1991

P P AP 2 T 2T TP T AT T LT D PR

r

Librarles

Procedure

Parameter Speciliers

ss.up
8s.write.
sa.write.

sas.write.

ss.write.

ss . write.

ss.write.

a3 .write
as.write.

sas.write.

ss.write.

ss.writa.

ss.scratream.to.array

char
endstream

hex.int

hex.int64

int

int64

.nl

string

reald2

realbd

taxt.line

CHAN OF SS scrn,
[IBYTE buffer

CHAN OF 5SS scrn

CHAN OF S5 scrn, VAL BYTE char

CHAN OF S5 scrn

CHAN OF S8 scrn,

VAL INT number, field

CHAN OF SS scrn,
VAL INT64 number,
VAL INT field

CHAN OF S5 scrn,

VAL INT number, field

CHAN OF 85 scrn,
VAL INTE4 numberx,
VAL INRT field

CHAN OF SS acrn
CHAN OF SS scrn, VAL []BYTE str

CHRN OF S5 scrn,
VAL REAL32 number,
VAL INT Ip, Dp

CHAN OF 5SS scrn,
VAL REALE4 number,
VAL INT Ip, Dp

CHAN OF SS scrn,
VAL (]BYTE str

72TDS 199 01

March 1991

-

40 ‘ Librarles ' Libraries . 41

. ¢ D '
Single length maths library §use "snglmath.lib" - Double fength maths library $USE "dblmath.lib"
' ¢ D
Result{s) Functlon | Parameter speclliers Resuit(s) Function | Parameter specifiers
REAL32 ACOS VAL REAL32 X . € D REAL64 DACOS VAL REAL64 X
REAL32 ALOG VAL REAL32 X 6.) REALE4 DALOG VAL REALG64 X
REAL32 ALOG10 | VAL REAL32 X ’ REALE4 DALOG10 | VAL REAL64 X -
REAL32 ASIN VAL REAL32 X e <) REALG4 DASIN VAL nr.u.sclx
REAL]2 ATAN VAL REAL32 X .) REALG4 DATAN VAL REALG4 'X
REAL32 ATAN2 |[VAL REAL32 X, VAL REAL32 Y « P REALE4 DATANZ | VAL REALE4 X, VAL REAL64 Y
REAL32 cos VAL REAL32 X . REAL6G4 DCOS VAL REAL64 X
REAL32 COSH VAL REARL32 X &) REAL6G4 DCOSH VAL REALE4 X
REAL32 EXP VAL REAL32 X REALG4 DEXP VAL REAL64 X
REAL32 POWER | VAL REAL32 X, VAL REAL32 Y L D | REARLE4 DPOWER | VAL REALG64 X, VAL REALG4 Y
RERL3I2, INT32 | RAN VAL INT32 X REALE4, INT64 | DRAN VAL INT64 X
RERL32 SIN VAL REAL32 X &) REAL64 DSIN VAL REAL64 X
REAL32 SIRH VAL REAL32 X ’ REALG4 DSINH VAL REALG64 X
REAL32 TAN VAL REAL32 X CID | REALG4 DTAN VAL REAL64 X
REALIZ TANH VAL REAL32 X REALG4 DTANH VAL REALG64 X
U
T400/T414/T425 maths library §USE “"tbmaths.lib"
&)
« D Contains the same functions as snglmath.lib and dblmath.lib, bul op-
timised for the IMS T400, IMS T414 and IMS T425 procesoors.
] e D
e D
e)
e)
e <)
e 2D
e)
' , N)
72 TDS 193 01 March 1981 LD 72 TDS 199 01 March 1991
¢)

Libraries

42
String library HUSE "string.lib"
Result Function Parameter Specitiers
IRT char.pos VAL BYTE search,
VAL [])BYTE str
INT compare.strings | VAL []BYTE atrl, 3tr2
BOOL eqgstr VAL {)IBYTE sl,s2
BOCL is.digit VAL BYTE char
BOOL is.hex.digit VAL BYTE char A
BOOL is.id.char VAL BYTE char
BOOL is.in.range VAL BYTE char,
bottom, top
BOOL is.lower VAL BYTE char
BOOL is.upper VAL BYTE char
INT, BYTE| search.match VAL []BYTE possibles,
' str
INT, BYTE aearch.no:match VAL {]BYTE posasibles,
str
INT string.pos VAL []BYTE search,
str

72TDS 189 01

March 1991

H

PR T S B B S A S S N S S N B B G R L L

(UB Ut U U UR L

w W w W

L)

)

Librarles

43

Procedure

Parameter Specifiers

append.char
append.hex.int
append.hex.int64
append.int
append.int64

append.real32
append.realéd

append. text

delete.string
insert.string

next.int.from.line

next.word. from.line

INT len, [}BYTE str,
VAL BYTE char

INT len, []BYTE atr,
VAL INT number,

INT len, [}BYTE str,
VAL INT64 number,

INT len, []BYTE str,

field

VAL INT width

VAL INT number, field

INT len, [])BYTE str,

VAL INT64 number, VAL INT field

INT len, []BYTE str,
VAL REAL32 number,
VAL INT Ip, Dp

INT len, []BYTE str,
VAL REALG64 number,
VAL INT Ip, Dp

INT len, []BYTE satr,
VAL []BYTE text

INT len, [)BYTE str,
VAL INT start,
BOOL not.done

VAL []IBYTE new.str,
INT len, []BYTE str,
VAL INT start, BOOL

VAL []BYTE line,
INT ptr, number,

VAL {]BYTE line,
INT ptr, INT len,
{]BYTE word, BOOL ok

siza, ~

not.dcna

BOOL ok

str.shift [1BYTE atx,
VAL INT start, len, shift,
BCOL not.dona
to.lower.case []BYTE str
to.upper.case [IBYTE strx
72 TDS 199 01 March 1991

44

Libraries

Type conversion library

Procedure Parameler Speclfiers
BOOLTOSTRING INT len, [)BYTE string, VAL BOOL b
HEXTOSTRING INT lan, []BYTE string, VAL INT n
HEX16TOSTRING INT len, []BYTE string, VAL INT16 n
HEX32TOSTRING INT len, [)BYTE string, VAL INT32 n
HEX64TOSTRING INT len, [IBYTE string, VAL INTE4 n
INTTOSTRING INT len, [)JBYTE string, VAL INT n
INT16TOSTRING INT len, []BYTE string, VAL INT16 n
INT32TOSTRING INT len, []BYTE string, VAL INT32 n
INT64TOSTRING INT len, [)BYTE string, VAL INTE4 n
REAL32TOSTRING | INT len, []IBYTE string,

VAL REAL32 X, VAL INT 1p, Dp
REALG4TOSTRING | INT len, []BYTE string,

VAL REAL64 X, VAL INT lp, Dp
STRINGTCBOOL BOOL Error, b, VAL [)BYTE string
STRINGTCOHEX BOOL Error, INT n, VAL []BYTE string
STRINGTOHEX16 BOOL Error, INT16 n,

VAL []BYTE string
STRINGTOHEX32 BOOL Error, INT32 n,

. VAL [])BYTE string

STRINGTOHEX64 BOOL Error, INT64 n, .

VAL [JBYTE string
STRINGTOINT BOOL Error, INT n, VAL []BYTE string
STRINGTOINT16 BOOL Error, INT1Eé n,

VAL []BYTE string
STRINGTOINT32 BOOL Error, INT32 n,

VAL []BYTE string
STRINGTOINT64 BOOL Error, INT64 n,

VAL []BYTE string
STRINGTOREAL32 | BOOL Error, REAL32 X,

VAL [}BYTE atring
STRINGTOREALG64 | BOOL Error, REALG64 X,

- VAL []BYTE satring

'}2 TDS 199 01

March 1991

JUSE "convert.lib"

»* e errerrroerrerorroerTeererLTPELTT RN

Libraries

45

Block CRC library

#USE "crc.lib"

Result | Functlon

Parameter Specifiers

INT CRCFROMLSB

INT CRCFROMMSEH

VAL [)BYTE InputString
VAL INT PolynomialGenerator,
VAL INT CldCRC

VAL []BYTE InputString,
VAL INT PolynomialGenerator,
VAL INT OldCRC

Link handling library

#USE "xlink.lib"

Procedure

Parameter Speclliers

InputOrFail.c

InputOrFail.t

Reinitialise

CHAN OF ANY c, []JBYTE mess
CHAN OF INT kill, BOOL aborted

CHAN OF ANY ¢, [)JBYTE mess,
TIMER t, VAL INT tima, BOOL aborted

QutputOrFail.c | CHAN OF RANY c, VAL []BYTE mass,
CHAN OF INT kill, BOOL aborted

OutputOrFail.t | CHAN OF ANY c, VAL [JBYTE meas,
TIMER t, VAL INT time, BOOL aborted

CHAN OF ANRY c -

-*

72 TDS 199 01

March 1991

46) Librarles
-
Debugging support library §USE "debug.lib"
Procedure ! Parametar Specifiers
DEBUG.ASSERT | vAL BOOL assertion ‘-

DEBUG.MESSAGE | VAL []BYTE measage

DEBUG.STOP -
DEBUG.TIMER CHAN OF INT stop

Mixed languages support library #Use "callc.lib”

i

Procedure Paramaetar Speclflets

init.static [] INT atatic.area, INT
required.sizae, gsb

init.heap VAL INT gsb, []INT
heap.area

tarminate.heap.use VAL INT gsb

terminate.static.use | VAL INT gsb

72 TDS 199 0%) March 1991

- v T B BT T T T PT T T T T LTSRS

Libraries 47
DOS specific hostio library HUSE "msdos.lib"
Procedure Parameter Speciliers

dos.receive.block

dos.send.block

dos.call.interrupt

dos.read.regs

dos.port.read

/| dos.port.write

CHAN OF SP fs, ts,

VAL INT32 location,

INT bytes.read, []BYTE block,
BYTE result

CHAN OF SP f;, ts,
VAL INT32 location,
VAL []JBYTE block,
INT len, BYTE result

CHAN OF SP f£s, t=s,

VAL INT16 interrupt,

VAL {dos.interrupt.regs.size]
BYTE register.block.in,

BYTE carry.flag,
[dos.interrupt .regs.size] BYTE
register.block.out,

BYTE result

CHAN OF SP fs, ts,
[dos.read.rags.size] BYTE
registers,

BYTE result

CHAN OF SP fs, ts,
VAL INT16 port.location,
BYTE value, result

CHAN OF SPp fa, ts,
VAL INT16 port.location,
VAL BYTE valua, BYTE result

-

72 TDS 199 01

March 1991

48 . Librarles
Compiler library user functions
Functlon Result(s) | Paramater speciflers
ABS REAL32 | VAL REAL32 x
ARGUMENT .REDUCE | BOOL, VAL REAL32 x, ¥y, Yy.err
INT32,
REAL32
ASHIFTRIGHT INT VAL INT argument, places
ASHIFTLEFT INT VAL INT argument, places
COPYSIGN REAL32 | VAL REAL32 x, ¥y
DABS REALG4 | VAL REALE4 x
DARGUMENT.REDUCE | BOOL, VAL REAL64 x, ¥y, Y.err
INT32,
REAL64
DCOPYSIGN REALG64 | VAL REAL64 x, ¥y
DDIVBY2 REALE4 | VAL REAL64 x
DFLOATING.UNPACK | INT, VAL REAL64 x
REALG4
DFPINT REALG4 VAL REAL64 x
DIEEECOMPARE INT VAL REAL64 x, ¥y
DISNAN BOOL VAL REAL64 x °
DIVBY2 REAL32 | VAL REAL32 x
DLOGB REALS4 | VAL REALE4 x
DMINUSX REAL64 | VAL REALG4 x
DMULBY2 REAL64 | VAL REAL64 x
DNEXTAFTER RERLG64 | VAL REALE4 x, ¥
DNOTFINITE BOOL VAL REAL64 x
DORDERED BOOL VAL REALE4 X, ¥
DSCALEB REAL64 | VAL REAL6A x, VAL INT n
DSQRT REAL64 | VAL RERL64 x
FLOATING.UNPACK | INT, VAL REAL32 x
REAL32
FRINT REAL32 |VAL REAL32 x.

72TDS 193 01

March 1991

'l\,‘_l*@@QQQG‘IOOO@@@Q‘DOOO@OOO

o W W W W W e e w

Librarles 49
Functlon Result(s) Parameter specifiers
IEEE320P - BOOL, REAL32 VAL REAL32 x,

VAL INT rm, op,
VAL REARL32 y
IEEE32REM BOOL, REAL32 VAL REAL32 X, X
IEEEG640P BOOL, RERL64 VAL REAL64 x,
VAL INT rm, ©p,
VAL REAL64 y
IEEEG4REM | BOOL, REAL64 |VAL REALE4 X, ¥
IEEECOMPARE | INT VAL REAL32 x, Y
ISNAN BOOL VAL REAL32 x
LOGB REAL32 VAL REAL32 x

LONGADD INT VAL INT left, right,

carry.in
LONGDIFF INT, INT VAL INT left, right,
borrow.in

LONGDIV INT, INT VAL INT dividend.hi,
dividend.lo, divisor

LONGPROD INT, INT VAL INT left, right,
carry.in

LONGSUB INT vAL INT left, right,
borrow.in

LONGSUM INT, INT VAL INT left, right,
carry.in

MINUSX REAL32 VAL REAL32 x
MULBY2 REAL32 VAL REAL32 x
NEXTAFTER REAL32 VAL REAL3Z x, ¥
NORMALISE INT, INT, INT| VAL INT hi.in, lo.in
ROTFINITE BOOL VAL REAL32 x
QRDERED BOOL VAL REAL32 x, Yy
REAL32EQ BOOL VAL REAL32 x, ¥
REAL32GT BOOL VAL REAL32 x, ¥
REAL320P REAL32 VAL REAL32 x, VAL INT op,

VAL REAL32 y
72 TDS 199 01 March 1991

——

Lo,

50 Libraries

Funclion Resuli(s} Parameter spocliiors

REAL32REM REAL32 VAL REAL32 x, ¥

REALSG4EQ BOOL VAL REARL64 x, Y

REALG4GT BOOL VAL REAL64 x, Y

REALG40OP REAL64 VAL REAL64 x, VAL INT op,
VAL REAL64 y ‘

REALG4REM REALG4 VAL BEAL64 x,: ¥

ROTATELEFT INT VAL INT arqument, places

ROTATERIGHT | INT VAL INT argument, places

SCALEB REALI2 VAL REAL32 x, VAL INT n

SHIFTLEFT INT, INT|VAL INT hi.in, lo.in,
places

SHIFTRIGHT | INT, INT |VAL IKT hi.in, lo.in,
Places

SQRT RERL32 VAL REAL32 =

Dynamic code loading support procedures

Procedure

Parameter Specifiers

KERNEL .RUN

LOAD.BYTE.VECTPR

LOAD . INPUT . CHANNEL

LOAD . INPUT . CRANNEL . VECTOR
LDAD.OUTPUT.CHANHEL

LOAD.OUTPUT.CHANNEL . VECTOR
-

VAL []BYTE code,

VAL INT entry.offset,
[]INT workspace,

VAL INT no.of.parameters

INT hare,
[1BYTE bytes

INT hera,
CHAN OF ANY in

INT here,
[JCHAN OF ARY in

INT here,
CHAN OF ANY out

INT heare,

[JCHAN OF ANY out

72TDS 199 01

March 1991

.fl'fl'fl'mfl'flW@@@@@@@@@@m@mmm'm”

E e e ¢ ¢ ¢

C e P E P E T T BT & EECE T

51

Libraries
Transputer error flag manlpulation
Procedure Parameter Speciliers
CAUSEERROR | -
ASSERT VAL BOOL test
Rescheduling priority process queue |
Procedure Parameter Speciliers
RESCHEDULE | -
72 TDS 199 01 March 1991

TR T L TP | YU

